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Abstract: The optimization is stimulated by the need to improve the conditions of use and operation of the structures, simultaneously with the requirements 
to reduce the size and weight of the structures. In the paper is presented in the calculation of articulated structures the criterion of equal strength, which 
determines the structure that meets the minimum volume condition. In the second paragraph of the paper starting from the volume formula of a statically 
indeterminate articulated structure depending on the tension in the bar, the bar length and the total number of bars through a series of mathematical 
calculations we arrive at the volume formula for a statically determined articulated structure. Next, the minimum volume expression is calculated taking into 
account some mathematical restrictions and conditions. The procedure is continued until the minimum volume values, calculated for two successive steps, 
coincide. It is still considered an articulated structure once statically indeterminate given by an equation. This equation is represented graphically in the xOy 
plane by a polygonal line and each point of intersection of the segments that make up the polygonal line is a solution of some previous equations. Some 
auxiliary functions are introduced in order to solve the volume equation. An example is a metal articulated structure that has the efforts given in a table. 
Depending on the volume of the articulated structure and its minimum, the efforts and areas of the sections of the minimum volume bars are obtained. In 
conclusion, the calculation of the optimal structures made up of articulated bars, from the condition of minimum volume, determines a structure of minimum 
volume which is at the same time a structure of equal resistance. Some data in the tables show the difference between the volume of the structure subjected 
to stresses, if the stresses in its bars were calculated using the stress method and if they were calculated with the minimum volume condition. At the same 
time, the compatibility condition is respected, the equations that express this condition being verified. 
Keywords: articulated structure, optimization, criterion of equal strength, minimum volume condition 
 
 

1.  INTRODUCTION 
Lattice beams are systems of rigid bars hinged at the ends. These joints are called nodes. If the truss bars are 
contained in same plane, the beams are called plane, otherwise they are called spatial. In construction, lattice 
beams are structural elements, which have the role of a taking loads from other structural or structural elements 
and to them transmit to the supports. They are used on roofs with large openings, bridges, industrial buildings 
etc. In mechanics, the lattice beam is two physical models: systems of material points, systems of bodies. To be 
functional, lattice beams must meet two conditions: to be non-deformable from a geometric point of view and 
to be fixed on the support bodies. In the paper is presented in the calculation of articulated structures the 
criterion of equal strength, which determines the structure that meets the minimum volume condition. Starting 
from the volume formula of a statically indeterminate hinged structure depending on the tension in the bar, 
the length of the bar and the total number of bars through a series of mathematical calculations we arrive at 
the volume formula for a determined hinged bar. Some data in the tables show the difference between the 
volume of the structure subjected to stresses, if the stresses in the bars were calculated by the tension method 
and if they were calculated with the minimum volume condition. At the same time, the compatibility condition 
is respected, checking the equations that express this condition. 
2.   THEORETICAL ASPECTS AND RESULTS 
The volume of a statically indeterminate articulated structure is given by the expression: 

                                                                   V = ∑ |Nk|·lk
σk

m
k=1                                                                                    (1) 

where Nk is the tension in bar k, lk is the length of bar k, σk is the admissible stress in bar k, and m is the 
number of bars.[2] 
Having: 

Nk = Nk
0 + ∑ nki · XIn

1  
where N0

k represents the tension in bar k in the base system, required under external loading nki (i = 1, …, 
n) the stresses in the bars of the basic system due to the unit unknowns Xi = 1 (I = 1, …, n), the volume 
expression becomes: 

                                      V = ∑ |ak + ∑ bki · Xin
i=1 |m

k=1                                                                    (2) 
in which: 

ak = Nk
0·lk
σk

,                 bki = nki·lk
σk

. 

For a statically determined articulated structure, one obtains: 

V = � ak = V0

m

k=1

 

Since this base system was arbitrarily chosen, V0 is not necessarily minimal.[2] 
Considering X1 ≠ 0,       X2 = X3 = ⋯ = Xn = 0, it is obtained: 
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                                                                     V = ∑ |ak + bkl · X1|m
k=1                                                                        (3) 

The minimum of this expression is determined as follows: 
≡ the roots of each expression under the "absolute value" sign are obtained by successive cancellation of 
all terms  

                                                         ai + bi1 · X1 = 0         (i = 1, … , m)                                                               (4) 
≡ equations (4) are performed so that the roots are in ascending order; 
≡ the expression is calculated 

1
2
� bk1

m

k=1

 

and the coefficient bi1 is determined, for which the inequality: 
                                                            |b11| + |b21| + ⋯+ |bi1| ≥ 1

2
∑ |bk1|m
1                                                            (5) 

to be verified. 
In this case, the value of the unknown X1, determined from ecuation al+bl1=0 minimize expression  (3)  
Denoting this value by X1

(1), the corresponding volume 

V = ��ak + bk1 · X1
(0)� = V1

m

k=1

 

is minimal. 
To show that V1 ≥ V0, calculate: 

��ak + bk1 · X1
(1)�

m

k=1

= ��ak −
al · bkl

bl1
� = ��ak −

al · bkl
bl1

� + � �ak −
al · bkl

bl1
�

m

k=l+1

l

k=1

m

k=1

 

The roots obtained by solving equations (4) lead to the following inequalities: 

−
a1
b1l

< −
a2

b21
< ⋯ <

al
bl1

< −
al+1

bl+1,1
< ⋯ < −

am
bm

 

otherwise 
a1

b11
>

a2
b21

> ⋯ >
al

bl1
> ⋯ >

am
bml

 

For l ≤ k ≤ m is obtained al
bl1

> ak
bk1

 

From here the inequality is deduced: 

V1 ≤�|ak| + � �
al · bk1

bl1
� = �|ak| + �

al
bl1
� � |bk1|

m

k=l+1

l

k=1

m

k=l+1

l

k=1

 

Condition (5) leads to: 

�|bk1| ≥
1
2
�|bk1| +

1
2
� |bk1|
m

k=l+1

l

k=1

l

k=1

 

otherwise  

�|bk1| ≥ � |bk1|
m

k=l+1

l

k=1

 

So, it was shown that: 

V1 ≤�|ak| = V0

m

k=1

 

Considering X1 = X1
(1),   X2 ≠ 0,   X3 = X4 = ⋯ = Xn = 0, it is obtained: 

V = ��ak + bk1 · X1
(1) + bk2 · X2�

m

k=1

 

Calculating the minimum of this expression as before, a value X2
(2) is determined for which the volume V is 

minimum. 
If this value is denoted by V2 we will have: 

V2 ≤ V1 ≤ V0 
Continuing the procedure, a string of V0, V1,…,Vs  values is determined for which: 

Vs ≤ Vs−1 ≤ ⋯ ≤ V2 ≤ V1 ≤ V0. 
The process continues until the minimum volume values, calculated for two successive steps, coincide. 
It was considered an articulated structure once statically indeterminate. The volume is given by the equation: 
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V = �|ak + bk1 · X|
m

k=1

 

This equation is represented graphically in the (X,Y) plane by the polygonal line in figure.1.a. Each point of 
intersection of the segments that make up the polygonal line represents a solution of equations (4). 
If the limit value of the minimum volume is reached in point D (figure.1.a) or on segmental DC (figure.1.b), then 
through point D or segmental DC there is a tangent X'X', parallel to the OX axis. Otherwise, the X"X" line 
intersects the polygon line at two points A and B. 

a)  b) 
Figure 1. Representation of the minimum volume 

The problem is reduced to solving equation (6) which can be put in the form: 
                                                     V = ∑ |bk1||X − Ak| ,       ak

bk1
= Ak

m
k=1                                                            (6) 

Entering the function: 
Φ(Ak) = 1

2
�1 + |X−Ak|

X−Ak
�,                                                                       (7) 

which takes the values: 

Φ(Ak) = �0  X ≤ Ak
1  X > Ak

, 

from (7) is determined: 
|X − Ak| = (2Φ(Ak) − 1) · (X − Ak) 

In this case, the volume equation becomes: 

V = �|bk1|(2Φ(Ak) − 1) · (X − Ak)
m

k=1

 

Solving this equation with respect to X gives: 

X = ∑ 2|bk1|·AkΦ(Ak)−∑ |bk1|·Ak+Vm
k=1

m
k=1

∑ 2|bk1|m
k=1 Φ(Ak)−∑ |bk1|m

k=1
                                                               (8) 

Taking X ≤ Ak or X > Ak, for any value of k, the unknown X is determined from equation (8). The calculation 
process continues until all Ak values are exhausted.[2] 
In solving equation (8), the following possible situations appear: 
≡ if the equation has only one solution for any k, the value of V is the limiting value of the minimum volume; 
≡ if the equation admits two sufficiently close roots, an infinity of solutions is obtained; 
≡ if the equation admits two roots that do not have the same order of magnitude, the problem has no 

solutions. 
It is now shown that the hinged structure of minimum volume is of equal strength. The volume of the structure 
is given by:  

V = �Ak · lk

m

k=1

 

in which: 

  Ak = |Sk|
Ifk

,                                                                                      (9) 

represents the area of the base. 
The minimum volume condition (9) determines a minimum volume structure that is also of equal strength. 
The system of compatibility equations is: 

∑ uij · Xj + ui0 = 0   (i = 1, … , n),    uij = ∑ nki·nkj
E·Ak

,     ui0 = ∑ Nk
0·nki
E·Ak

m
k=1

m
k=1    n

j=1                       (10) 

Substituting (9) into the expressions (10) we obtain, for σ=constant: 

uij = σ · �
signMk · nkj · nki

E · Sk
,      ui0 = σ · �

signMk · Nk
0 · nki

E · Sk

m

k=1

m

k=1
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and, equations (10) become: 

� signMk · nki = 0,   (i = 1, … , m)
m

k=1

 

which are identical to the minimum volume equations 
∂V
∂Xi

= 0,   (i = 1, … , n) 

As an example, consider the metal articulated structure in figure 
2. In table 1 the efforts N0 and n are given. The volume of the 
articulated structure is given by the expression (2). 

 
Figure 2. Metal articulated structure 

 

V =
1
If

(�−P −
√2
2

X1� + 3 �
7P
2
−
√2
2

X1� + 3√2 �
P√2

2
+ X1� + 3√2|X1| + 3 �−P −

√2
2

X1� + 3 �P −
√2
2

X1�

+ 3
5P
2

+ 3
5√2

2
P + 3P + 3P) 

The minimum of this expression is reached for the value: X1 = −P√2
2

 

For P = 30kN, σ = 1500daN/cm2 and 1 = 3 m, the forces and areas of the minimum volume bar sections given 
in table 2 are obtained. The minimum volume has the value 0.112 · 106  cm3. 
3.  CONCLUSIONS 
The calculation of the optimal structures made of articulated bars, from the condition of minimum volume, 
determines a structure of minimum volume which is at the same time a structure of equal strength. Table 1 
shows the difference between the volume of the structure subjected to stress, if the efforts in its bars were 
calculated with the effort method and if they were calculated with the minimum volume condition. At the same 
time, the compatibility condition is respected, the equations expressing this condition being verified. 
Note: This paper was presented at International Conference on Applied Sciences – ICAS2022, organized by University Politehnica Timisoara, Faculty of 
Engineering Hunedoara (ROMANIA) and University of Banja Luka, Faculty of Mechanical Engineering Banja Luka (BOSNIA & HERZEGOVINA), in May 25–28, 
2022, in Banja Luka (BOSNIA & HERZEGOVINA) 
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Table 1. The efforts N0 and n 

Bar N0 n N 
Minimum volume 

N A[cm2] 

1-2 -P −
√2
2

 -3,72P -P 2 

1-3 
7P
2

 −
√2
2

 3,28P 4P 8 

1-4 P√2
2

 1 1,03P 0 0 

2-3 0 1 0,32P -0,707P 1,414 

2-4 -P −
√2
2

 -1,23P -P 2 

3-4 P −
√2
2

 0,78P 1,5P 3 

3-5 
5P
2

 0 2,5P 2,5P 5 

4-5 −5√2P
2

 0 -3,53P -3,53P 7,06 

4-6 P 0 P P 2 
5-6 -P 0 -P -P 2 

 


