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Abstract: The aim of this paper is to determine the electric resistance of a hollow conical conductor body for the steady-state current flow. The studied 
steady-state conduction problem is axisymmetric. The material of the conductor body is isotropic and non-homogeneous. The conductivity is a smooth 
function of the polar angle of a spherical coordinate system. The materials, whose properties are smooth functions of the space coordinates, are called 
functionally graded materials. An analytical solution which is based on the governing equations of steady-state problems of electricity is presented. The effect 
of the non-homogeneity to the electric resistance is analyzed. Two types of non-homogeneities are considered. The numerical results of the paper can be used 
as benchmark solutions for the usual numerical methods, such as finite element method finite difference method, boundary element method, etc. 
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1. INTRODUCTION 
Electrical resistance of an electrical conductor is the 
measure of the difficulty to pass a steady electric 
current through that conductor body. The definition 
of the electrical resistance is based on Ohm’s law it is 
defined as the ratio of the applied voltage to the 
current. In paper [8], upper and lower bounds are 
proven for the electrical resistance of homogeneous 
ring like axisymmetric conductor. Paper by Ecsedi and 
Baksa are developed a mathematical model to 
determine the steady-state electric current flow 
through in non-homogeneous isotropic conductor 
whose shape has a three-dimensional hollow body [9]. 
This paper deals with the determination of the electric 
resistance of a conical body which bordered by two conical surfaces and two 
spherical surfaces as shown in Figure 1. The apex of conical surfaces and the 
center of spherical surfaces are the same points (Figures 1, 2). The spherical 
coordinate system Orϕϑ  will be used to formulate the governing equations. 
The connection of the rectangular coordinates , ,x y z  and spherical 
coordinates , ,r ϕ ϑ  is as follows (Figure 1) 

cos sin , sin sin , cos .x r y r z rϕ ϑ ϕ ϑ ϑ= = =                      (1) 
The space domain occupied by conical body B  in the spherical coordinates 
can be given as 

 ( ){ }1 2, , | , 0 2 , 0 .B r r r rϕ ϑ ϕ π ϑ π= ≤ ≤ ≤ ≤ ≤ ≤  (2) 

Later on we will use next formulae [1] 
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The unit vectors of the spherical coordinate system Orϕϑ  are denoted by , ,r ϕ ϑe e e  [1]. The boundary surfaces 

of conductor body B  are separated into four different parts as 1 2 3 4B B B B B∂ = ∂ ∪∂ ∪∂ ∪∂  where 

 ( ){ }1 1 2 1, , | , 0 2 , ,B r r r rϕ ϑ ϕ π ϑ ϑ∂ = ≤ ≤ ≤ ≤ =  (6) 

 ( ){ }2 1 2 2, , | , 0 2 , ,B r r r rϕ ϑ ϕ π ϑ ϑ∂ = ≤ ≤ ≤ ≤ =  (7) 

 ( ){ }3 1 1 2, , | , 0 2 , ,B r r rϕ ϑ ϕ π ϑ ϑ ϑ∂ = = ≤ ≤ ≤ ≤  (8) 

 ( ){ }4 2 1, , | , 0 2 , .B r r rϕ ϑ ϕ π ϑ ϑ ϑ∂ = = ≤ ≤ ≤ ≤  (9) 

 
Figure 1. Non-homogeneous conical conductor body 

 
Figure 2. Meridian section of the conical body 
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The boundary surface segments 3B∂  and 4B∂  are insulated and on the boundary surface segments 1B∂  and 

2B∂  the electric potential ( ), ,U U r ϕ ϑ=  is prescribed that is 

 ( ) 1 1, , constant on ,U r U Bϕ ϑ = = ∂  (10) 

 ( ) 2 2, , constant on ,U r U Bϕ ϑ = = ∂  (11) 

where 1 2U U≠ . The boundary conditions on the insulated boundary surface segment in terms of ( ), ,U U r ϕ ϑ=  

can be formulated as  

 
3 40 on .U UU B B

n r
∂ ∂

⋅∇ = = = ∂ ∪∂
∂ ∂

n  (12) 

Here, n  is the unit normal vector to the insulated surfaces 3B∂  and 4B∂  that is r=n e . The dot between two 

vectors denotes the scalar product. According to theory of the steady-state current flow we have the next 
equations for the steady motion of charges [2,3,4,5,7] 

 , 0, .Uσ= ∇⋅ = = −∇j E j E  (13) 

In Eq. (13)1 ( ), ,rσ σ ϕ ϑ=  denotes the conductivity of the isotropic non-homogeneous conductor body [3,4]. 

The International System of Units (SI) is used throughout in this paper. Ohm’s law (13)1 is based on the 
experimental observation which formulates that at constant temperature in isotropic conductor the current 
density vector j  is proportional to the electric field vector E . From the above equations it follows that 

 ( ) ( )0, , , ,U r Bσ ϕ ϑ∇⋅ ∇ = ∈  (14) 

 ( ) 3 40, , , ,U UU r B B
n r

σ σ σ ϕ ϑ∂ ∂
⋅ = − ⋅∇ = − = − = ∈∂ ∪∂

∂ ∂
j n n  (15) 

that is on the insulated boundary surface segments the boundary condition (12) is valid. We introduce a new 

function ( ), ,u u r ϕ ϑ=  by the next definition 

 ( ) ( ) ( )2 1 1, , , , .U r U U u r Uϕ ϑ ϕ ϑ= − +  (16) 

It is evident ( ), ,u u r ϕ ϑ=  satisfies the next boundary-value problem  

 ( )0, , , ,u u r Bσ σ ϕ ϑ∆ +∇ ⋅∇ = ∈  (17) 

 ( ) ( ) 1, , 0, , , ,u r r Bϕ ϑ ϕ ϑ= ∈∂  (18) 

 ( ) ( ) 2, , 0, , , ,u r r Bϕ ϑ ϕ ϑ= ∈∂  (19) 

 ( ) 3 40, , , .u r B B
r

ϕ ϑ∂
= ∈∂ ∪∂

∂
 (20) 

Here we note, ( ), ,u u r ϕ ϑ=  is unit free. An electric current in the conductor is the continuous passage of electric 

charges along the conductor. The constant electric potential difference between the surfaces 1B∂  and 2B∂  

maintain the steady flow of the electric current. The amount of charge following through surface segment 2B∂  

per unit time is denoted by I . The determination of the current I  is based on the next equation [2,3] 

 ( )
2 2 2

1 2d d d .
B B B

uI A U A U U A
n

σ σ
∂ ∂ ∂

∂
= ⋅ = − ⋅∇ = −

∂∫ ∫ ∫j n n  (21) 

Here, dA  denotes the area element and in the present problem 

 1 .u uu u
n rϑ ϑ
∂ ∂

= ⋅∇ = ⋅∇ =
∂ ∂

n e  (22) 

The considered problem is axisymmetric since we assume that ( )σ σ ϑ=  and we have ( ),u u r ϑ= . The 

expression of area element of surface segment 2B∂  is 

 2d 2 sin d .A r rπ ϑ=  (23) 
Substitution of Eqs. (22) and (23) into the Eq. (21) gives 

 ( ) ( )
2

21

1 2 2 22 sin d .
r

r

uI U U r
ϑ

π ϑ σ ϑ
ϑ
∂

= −
∂∫  (24) 

The electrical resistance R  of the conductor body is defined as 
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2. DETERMINATION OF ELECTRICAL RESISTANCE 
From Eq. (17) it follows that  

 ( )2 2 2
1 1 1 1sin 0, , , ,

sin
u u ur r B

r r r r r
σσ ϑ ϕ ϑ

ϑ ϑ ϑ ϑ ϑ
∂ ∂ ∂ ∂ ∂ ∂    + + = ∈    ∂ ∂ ∂ ∂ ∂ ∂    

 (26) 

Since we have ( )σ σ ϑ=  and the considered problem is axisymmetric. Next we assume ( )u u ϑ= . According to 

boundary conditions (18) and (19) and Eq. (26) we get the function ( )u u ϑ=  is the solution of the next 

boundary-value problem 

 ( )( ) sin 0, , , ,
sin

u u r Bσ ϑ σϑ ϕ ϑ
ϑ ϑ ϑ ϑ ϑ

∂ ∂ ∂ ∂  + = ∈ ∂ ∂ ∂ ∂ 
 (27) 

 ( ) ( ) ( ) ( )1 1 2 20, , , , 1, , , .u r B u r Bϑ ϕ ϑ ϑ ϕ ϑ= ∈∂ = ∈∂  (28) 

It is evident that ( )u u ϑ=  satisfies the boundary condition (12). Solution of the second order ordinary 

differential equation for ( )u u ϑ=  under the boundary condition (28) is as follows 

 1

2

1

1 2

d
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d
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u

ϑ

ϑ
ϑ

ϑ
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From Eq. (29) it follows that 
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1
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d
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u
ϑ

ϑ
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Substitution Eq. (30) into the formula of electrical resistance gives 

( )

2

1

2 1

d
( )sin

.
2

R
r r

ϑ

ϑ

ϑ
σ ϑ ϑ
π

=
−

∫
                                (31) 

3. EXAMPLES FOR CONICAL CONDUCTOR 
For conical conductor body which has the next data 1 0.1 m,r =  2 0.5 m,r =  1 / 8,ϑ π=  2 / 3ϑ π=  the electric 
resistance is determined if 
Case a) 

 
0

1

( ) ,
n

ϑσ ϑ σ
ϑ
 

=  
 

 (32) 

Case b) 
 ( )0( ) exp .σ ϑ σ αϑ=  (33) 

Here, 
 7

0
A3.77 10 .

Vm
σ = ×  (34) 

Figure 3 shows the dependence of electric resistance from power index n  (case a). The plot of electric 
resistance as a function of α  is presented in Figure 4. 
4. RADIALLY NON-HOMOGENEOUS CIRCULAR CYLINDER 
When the point O  is an infinite distance point then the conical surfaces will be circular cylinder whose creators 
are parallel to axis z  and the spherical surfaces will be perpendicular planes to the common axis of boundary 
circular cylinder (Figure 5). Assuming radial non-homogeneity of the circular cylindrical conductor by the same 
method as was used in Sections 1 and 2 of this paper we can compute the electric resistance of this conductor. 
The end cross sections at 0z =  and z L=  are insulated and the inner and outer cylindrical boundary surfaces 
have given electric potential 1U  and 2U  (Figure 5).  
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The space domain B  occupied by the hollow circular cylinder in the polar coordinate system Or zϕ  can be 
given as 
 ( ){ }1 2, , | , 0 2 , 0 .B r z r r r z Lϕ ϕ π= ≤ ≤ ≤ ≤ ≤ ≤  (35) 

 
Figure 3. Resistance of the conical conductor body as a function of power 

index ,n  case a) 

 
Figure 4. Resistance of the conical conductor body as a function ,α  

case b) 
The boundary surface of B  is 

( ){ }1 1, , | , 0 2 , 0 ,B r z r r z Lϕ ϕ π∂ = = ≤ ≤ ≤ ≤  (36) 

( ){ }2 2, , | , 0 2 , 0 ,B r z r r z Lϕ ϕ π∂ = = ≤ ≤ ≤ ≤  (37) 

( ){ }3 1 2, , | , 0 2 , 0 ,B r z r r r zϕ ϕ π∂ = ≤ ≤ ≤ ≤ =  (38) 

( ){ }4 1 2, , | , 0 2 , ,B r z r r r z Lϕ ϕ π∂ = ≤ ≤ ≤ ≤ =  (39) 

We assume that the electric potential U  depends only on the 
radial coordinate r  that is ( )U U r= . A new function ( )u u r=  
will be introduced by the next definition: 

( )2 1 1( ) ( ) .U r U U u r U= − +  (40) 

By the use of Eqs. (14)1,2,3 it can be shown that ( )u u r=  is the solution of the next boundary-value problem 

 
2

1 22
1( ) 0, ,u u ur r r r

r r r r r
σσ

 ∂ ∂ ∂ ∂
+ + = ≤ ≤ ∂ ∂ ∂ ∂ 

 (41) 

 1 2( ) 0, ( ) 1.u r u r= =  (42) 

The boundary conditions on the insulated boundary surface segments 3B∂  and 4B∂  are satisfied, since 

( )u u r=  does not depend on the axial coordinate z . From Eqs. (41), (42) it follows that 

 
1

2

1

1 2

d
( )

( ) , .
d

( )

r

r
r

r

u r r r r

ρ
ρσ ρ

ρ
ρσ ρ

= ≤ ≤
∫

∫

 (43) 

Simple computation shows that 
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It can be proven that the connection between the potential difference 2 1U U−  and the current I  is formulated 
as 

 ( )
2

1

2 12
.

d
( )

r

r

L U U
I

r
r r

π

σ

−
=

∫

 (45) 

From Eq. (45) we can get immediately the expressions of electric resistance R  of the radially non-homogeneous 
hollow cylindrical conductor 

 
Figure 5. Radially non-homogeneous circular cylinder 
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5. EXAMPLE FOR HOLLOW CIRCULAR CYLINDRICAL CONDUCTOR 
For hollow non-homogeneous circular cylinder two types of radial non-homogeneity will be considered 
Case (a) power law radial non-homogeneity 

 
0 0

1

, constant,
n

r
r
r

σ σ σ
 

= = 
 

 (47) 

Case (b) exponential radial non-homogeneity 

0 0( ) exp( ), constant.r rσ σ α σ= =                                                    (48) 

 
Figure 6. The graph of function ( )R R n=  for power radial non-

homogeneity 

 
Figure 7. The graph of function ( )R R α=  for exponential radial non-

homogeneity 
In Eqs. (47), (48) n  and α  are material parameters they describe the degree of the material inhomogeneity. For 
case (a) we obtain from the formula (46) 
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2
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 =  (49) 

 For case (b) we have 

 ( ) ( )
2

1 1 2

0 0

1 d
exp( ) 1, 1,

( ) .
2 2

r

r

r
r r Ei r Ei r

R
L L

α α α
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πσ πσ
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 (50) 

In Eq. (50) [6] 
 d(1, ) .

exp( )
xEi x

x x
= −∫  (51) 

In the case of power radial inhomogeneity Figure 6 shows the graph of function ( )R R n= . The dependence of 
electrical resistance from the material parameter α  in the case (b) is presented in Figure 7. The following 

numerical data are used in plots of ( )R R n=  and ( )R α : 1 0.25 m,r =  2 0.5 m,r =  1 m,L =  
0

0

1 ,σ
ρ

=  

0
Vm0.0178 .
A

ρ =  

6. CONCLUSIONS 
In this paper the electric resistance of a conical isotropic inhomogeneous conductor is determined by the use 
of governing equations of steady state current flow of electricity. Analytical closed form solutions are presented 
for the electric potentials as a function position and the expressions of electric resistances. The effects of non-
homogeneity for power law and exponential law types of non-homogeneities are analyzed. Two numerical 
examples illustrate the applications of the formulated exact solutions. The case of the radially non-
homogeneous hollow circular cylinder is also examined. 
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