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Abstract: This paper deals with the determination of displacements and thermal stresses in radially non–homogeneous curved beams which have uniform 
curvature. The source of the thermal loading is a prescribed steady–state temperature field which depends on the radial coordinate. The developed analytical 
solution is based on the Euler–Bernoulli beam theory, furthermore the field equations of linear thermoelasticity are used to get the thermal displacements 
and the stress field. The material properties of the considered curved beam are arbitrary smooth functions of the radial coordinate. Examples of functionally 
graded materials with exponential and power law based material distributions illustrate the applications of the developed analytical method. The results are 
compared to results coming from finite element simulations. 
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1. INTRODUCTION 
Functionally graded materials (FGMs) are advanced materials in which the material composition and hence the 
material properties vary continuously as a certain function of the spatial coordinate. FGMs have excellent 
thermomechanical properties and offer great application potential. Recent years a lot of studies have been 
performed on the mechanics of functionally graded structural components such as [1–6]. Curved beams are 
frequently used in frame structures, lots of books and papers tackle the stress analysis of such curved beam 
components e.g. [7–9].  
Timoshenko and Goodier [10] found explicit solutions of curved beams under pure bending using the Airy 
stress function formulation. Lekhnitskii [11] derived the solutions with a specific Young’s modulus which was a 
product of a periodic function of the polar angle and a power law function along the radial coordinate. Bagci 
[12] studied curved beams and rings of exponentially variable thickness by use of the plane stress state 
formulation in cylindrical coordinate system.  Kilic and Aktas [13] gave a solution of a curved cantilever beam 
subjected to a single concentrated force at the free end of the beam. Dryden investigated the stresses within a 
functionally graded curved beam under pure bending condition with a specific function of Young’s modulus 
assuming that, the Poisson’s ratio is constant [14].  
Paper [15] presented analytical solutions for curved beams of different cross sections under pure bending, 
where the elastic properties were of a power functions of the thickness coordinate. The paper [16] considered 
exponential distribution of the material properties within in the curved beam component. Wang and Liu [17] 
investigated the functionally graded orthotropic elastic beam subjected to uniform loading at its outer surface. 
In paper [18] analytical solutions are presented for the bending problem of radially graded curved cantilevers 
on the basis of plane stress formulation. Tufekci et. al. [19] determined the stress and displacement fields in a 
radially graded beam with arbitrary material distribution in the radial direction under the effect of axial extension 
and shear deformations with the initial values method. Based on the Euler–Bernoulli beam theory, Pydah and 
Sabale [20] tackled the flexure problem of bi–directional functionally graded circular beams subjected to various 
tip loads. The considered curved beam is graded along the radial and tangential directions. Eslami et. al [21] 
used a two step perturbation technique to present the solution of functionally graded shallow tube subjected 
to lateral pressure and temperature field, furthermore the properties of the arch were distributed through the 
radial direction using a power law function. Gao et. al. [22] presented an explicit solution of a curved beam 
subjected to a concentrated force at the free end of the cantilever beam when the elastic properties vary along 
the radial direction according to a given power law function. In paper [23] the moduli of elasticity in tension 
and compression are assumed to be two different exponential functions of the radial coordinate and the stress 
distributions are determined with power series method. In the work [24] the solution of a radially graded circular 
curved beam is presented, where the thermal load is obtained from a given temperature field which depends 
on only the radial coordinate and the modulus of elasticity varies according to a power law function.  
In this paper our aim is to give an analytical solution of a curved beam for in plane deformation which is 
subjected to a given but arbitrary radially nonhomogeneous temperature field. Furthermore, the material 
properties are arbitrary smooth functions of the radial coordinate.  
2. GOVERNING EQUATIONS 
Consider a thin circular radially non–homogeneous curved beam of a rectangular cross section (Fig. 1). The 
curved beam occupies the space domain B, whose definition is given by Eq. (1) 
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in the cylindrical coordinate system Orφz. The cross section 
of the curved beam with uniform curvature is shown in Fig. 
2. The unit vectors of the cylindrical coordinate system are 
denoted by er, eφ and ez. The presented analytical model is 
based on the Euler–Bernoulli beam theory. The material 
properties of the considered curved beam depend only on 
the radial coordinate r, they are smooth functions of the 
radial coordinate. This type of material inhomogeneity is 
called radially graded materials [24, 25].  
According to paper [26] the displacement vector u of the 
Euler–Bernoulli curved beam in the case of in–plane 
deformation can be represented as 
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Application of the strain–displacement relations of linear elasticity [3, 7, 10] gives 
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In Eqs. (3–5) , ,r zϕε ε ε  are the normal strains and , ,r z rzϕ ϕγ γ γ  denote the shearing strains.  

The displacement and strain fields given by Eqs. (2–5) satisfy the requirements of 
the Euler–Bernoulli beam theory [26]. The constitutive law of linear thermoelasticity 
for the present problem can be formulated as [3, 7, 8, 9]  

0

( , ) ( ) ( , ) ( ) ( ) ,

( ) ( ) .

r E r r r t r

t r T r T
ϕ ϕσ ϕ ε ϕ α = − 

= −
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In the previous equation ϕσ  denotes the circumferential normal stress, E is the 

modulus of elasticity, α  is the coefficient of linear thermal expansion, T  is a given 
temperature field and 0T  is the reference temperature at which the stresses are zero 
if the curved beam is loading free. In order to formulate the stress resultant–
displacement relations the following cross sectional properties are introduced: 
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The thermal load is characterized by two quantities in the stress resultant–displacement relations 
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The stress resultants are defined according to paper [26] as 
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Figure 1. Radially nonhomogeneous curved beam 

 
Figure 2. The cross section of 

the curved beam 
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where ϕτ r  is the shearing stress. In paper [26] the following equilibrium equations are derived: 

  d d0, 0,
d d r
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+ + = − + =                                                              (11) 
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In Eqs. (11) and (12) ( )r rf f r=  and ( )f f rϕ ϕ=  are the applied external forces and ( )q q ϕ=  is the applied 

moment obtained from the external forces [26]. Combination of Eqs. (6–10) leads to the expressions of 
( )N N ϕ=  and ( )M M ϕ=  
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where  
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Assuming that there are no applied external forces, that is 
  0, 0.rf f qϕ = = =                                                                                 (16) 

In this case we have 
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From Eqs. (11)1,2 it follows that 

   
2

2

d 0.
d

N N
ϕ

+ =                                                                                     (18) 

In the presented numerical examples the end cross section at 1ϕ ϕ=  is fixed, that is  
 1 1 1 1( ) 0, ( ) 0, ( ) 0, ( 0),U Vϕ ϕ φ ϕ ϕ= = = =               (19) 

where  

   d( ) .
d
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=                                         (20) 

From the kinematical boundary conditions it follows that 
1( ) .ϕ =u 0  The reactions at 1ϕ ϕ=  are  

 0 0 0(0), (0), (0).N N S S M M= = =                (21) 
( )B ϕ  denotes the part of the curved beam which is described 

by Eq. (22) 
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The equilibrium condition of ( )B ϕ  yields the following results 
  0 0 1 2( ) cos sin , ,N N Sϕ ϕ ϕ ϕ ϕ ϕ= − ≤ ≤                                                                 (23) 
  0 0 1 2( ) sin cos , ,S N Sϕ ϕ ϕ ϕ ϕ ϕ= − ≤ ≤                                                                 (24) 

  0 1 2( ) , .M Mϕ ϕ ϕ ϕ= ≤ ≤                                                                             (25) 
3. DETERMINATION OF THE THERMAL DISPLACEMENT 
Substitution of Eq. (23) into Eq. (13) and substitution of Eq. (24) into Eq. (14) lead to the following coupled system 

of equations for W  and d
d
φ
ϕ
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From Eqs. (26) and (27) it follows that 
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Figure 3. A segment of the curved beam 

with its mechanical loading 
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Integration of Eq. (29) with respect to ϕ  between the boundaries 1 0ϕ =  and ϕ  leads to the expression of the 
cross–sectional rotation 
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Eq. (28) is a second order differential equation for the radial displacement ( )U U ϕ= : 
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The general solution of differential equation (30) is as follows 
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Substitution of Eq. (31) into Eq. (20) gives 
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The unknown constants 1C  and 2C  and the unknown reactions 0 0 0, ,N S M  are obtained from the boundary 

conditions. In all examples the cross section at 1ϕ ϕ=  is fixed, which means that from Eq. (19) we have 
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At the end cross section 2ϕ ϕ=  three types of boundary conditions will used in the presented numerical 
examples, which are listed in Table 1. 

4. COMPUTATION OF THE STRESSES 
Knowing the displacement field by the use of 
formula (6) we can get directly the circumferential 
normal stress ϕσ . The shearing stress rϕτ  and normal 
stress rσ  are obtained from the scalar equations of 
the equilibrium equation [3, 7, 8, 11]: 
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The stresses ( , )r r rσ σ ϕ=  and ( , )r r rϕ ϕτ τ ϕ=  satisfy 

the following stress boundary conditions on the 
curved cylindrical boundary surfaces of the beam 

  1 2( , ) ( , ) 0, ,r ra bϕ ϕτ ϕ τ ϕ ϕ ϕ ϕ= = ≤ ≤             (38) 

  1 2( , ) ( , ) 0, .r ra bσ ϕ σ ϕ ϕ ϕ ϕ= = ≤ ≤             (39) 
In the present problem the von–Mises stress can be computed as 

  2 2 2( , ) 3 .M r r rr ϕ ϕ ϕσ ϕ σ σ σ σ τ= − + +                                                               (40) 

5. NUMERICAL EXAMPLES 
The next data are valid for all of the presented numerical examples: 
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Example1. Our first example is a curved beam with fixed cross sections, which is illustrated in Fig. 4.a. The 
following properties are used in this case: 

Table 1. Boundary conditions at the end cross section 2ϕ ϕ=  

fixed ends 
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end 
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in radial 
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The plots of ( ), ( )U Vϕ ϕ  and ( )φ ϕ  are shown in Figs. (4c–4e). 

 
Figure 4.a. Curved beam with fixed ends 

 
Figure 4b. Radial displacements from FEM solution 

 
Figure 4c. Radial displacements from analytical solution 

 
Figure 4d. Plot of ( ).V V ϕ=  

 
Figure 4e. Plot of ( ).ϕΦ = Φ  

 
Figure 4f. Plot of ( ).N N ϕ=  

 
Figure 4g. Plot of ( ).S S ϕ=  

 
Figure 4h. Plot of ( ).M M ϕ=  

 

 
Figure 4j. Plots of stresses 

The results are verified by finite element simulations carried out by Abaqus (Fig. 4b). For the finite element 
modelling of the curved structure quadratic plane stress elements were used in a steady–state coupled 
temperature–displacement formulation using user defined materials to describe the radially graded material 
behavior. The solutions coming from the FEA and the developed method are in good agreement. 
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The graphs of ( ), ( )N Sϕ ϕ  and ( )M ϕ  are presented in Figs. 4f–4h. (The stresses ( , ), ( , ), ( , )r rr r rϕ ϕσ ϕ σ ϕ τ ϕ  and 

( , )M rσ ϕ  as functions of the radial coordinate r are shown in Figs. 4j for five different values of ϕ . 

 
Figure 5a. Curved beam with fixed end and radially guided end 

 
Figure 5b. Plots of the radial displacement function and ( ).V V ϕ=  

 
Figure 5c. Plot of ( ).ϕΦ = Φ  

 
Figure 5d. The graphs of ( )ϕ=N N and ( ).S S ϕ=  

 
Figure 5e. Plot of ( ).M M ϕ=  

 

 
Figure 5f. Plots of stresses 

Example2. In the second numerical example a curved beam considered with a fixed and a radially guided end 
cross sections (Fig. 5a). The following numerical data are used in this example: 
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The plots of ( ), ( )U Vϕ ϕ  and ( )φ ϕ  are shown in Figs. 5b–5c. The graphs of the inter forces ( ), ( )N Sϕ ϕ  and 
bending moment ( )M ϕ  are presented in Figs. 5d–5e. The stresses ( , ), ( , ), ( , )r rr r rϕ ϕσ ϕ σ ϕ τ ϕ  and ( , )M rσ ϕ  as 
the function of the radial coordinate are shown in Fig. 5f. for five different values of .ϕ  
Example 3. In the third example the curved beam is fixed at one end cross section and simply supported at the 
other end cross section (Fig. 6a). In this case we have: 

  

2
4 1

0 0

2

0 2

10 K , ( ) ,

( ) , .

rr
a

rE r E
a

α α α

ϕ π

− −  = =  
 

 = = 
 

                                                                       (44) 



ANNALS of Faculty Engineering Hunedoara – INTERNATIONAL JOURNAL OF ENGINEERING 
Tome XX [2022]  |  Fascicule 4 [November] 

113 |  F a s c i c u l e  4  

Figs. 6b–6d. give the plots of ( ), ( ), ( )U U V Vϕ ϕ ϕ= = Φ  and Fig.6e illustrates the plots of 
( ), ( ), ( ).N N S S M Mϕ ϕ ϕ= = =  Figs 6f shows the stresses ( , ), ( , ), ( , )r rr r rϕ ϕσ ϕ σ ϕ τ ϕ  and ( , )M rσ ϕ for five different 

values of ϕ . 

 
Figure 6a. Curved beam with fixed and simply supported end cross sections 

 
Figure 6b. Plots of ( )U U ϕ=  and ( )V V ϕ=  (analytical solution) 

 
Figure 6c. Plot of ( )U U ϕ=  (FEM solution). 

Figure 6d. Plot of ( ).ϕΦ = Φ  

 
Figure 6e. Plots of 

( ), ( ), ( ).N N S S M Mϕ ϕ ϕ= = =  

 
Figure 6f. Plots of the circumferential normal stresses, and von Mises stresses 

Example 4. In our last numerical example a radially nonhomogeneous circular ring is considered (Fig. 7a). In this 
example  
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4 1
0 010 K , ( ) .rr

a
α α α− −  = =  
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                                                                  (45) 

Furthermore the problem is axisymmetric, thus we  
  ( ) constants, ( ) 0, ( ) 0.U U Vϕ ϕ φ ϕ= = = =                                                          (46) 

A simple computation which is based on Eqs. (6, 13, 14, 17) gives 
  0, 0, 0, ( ).n n mU Rh N S M E A Rh h= = = = −                                                         (47) 

In the present problem 53.357 10 m, 33.189 Nmm.U M−= ⋅ = − The normal stresses ( ), ( )r r r rϕ ϕσ σ σ σ= =  and von 

Mises stress ( )M M rσ σ=  are obtained from Eqs. (48), (49), (50) 
( )( ) ( ) ( ) ( ),U rr E E r r t r
rϕσ α= −                                                                    (48) 

  ( ) 1( ) d ( ) ( ) ( )d ,
b r

r
a a

U Er E t
r r

ρσ ρ ρ α ρ ρ ρ
ρ

= −∫ ∫                                                            (49) 

  2 2( ) ,M r rr ϕ ϕσ σ σ σ σ= − +                                                                        (50) 

and the graphs of these stresses are shown in Fig. 7b.   

 
Figure 7a. Radially non–homogeneous circular ring  

Figure 7b. Plots of stresses 
In each example, the results coming from finite element simulations are in good agreement with the analytical 
solutions, although the accuracy of the FE results significantly depends on the number of elements. To eliminate 
the oscillation of the results of the commercial FE packages (especially for the stress distribution), sufficiently 
fine mesh is required. 
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6. CONCLUSIONS 
This paper presents an analytical method for the computation of the stress field and deformations in radially 
non–homogeneous curved beams and rings. The considered problem is steady state and the developed 
method is based on the Euler–Bernoulli beam theory, where the applied steady–state thermal field depends 
only of the radial coordinate. This novel analytical method can be efficiently used to calculate the exact 
functions for the thermal stresses and displacements within curved beam components made from functionally 
graded materials and radially layered composites. In these materials the material properties – and the material 
distribution – are arbitrary functions of the radial coordinate. The developed method can be used as a 
Benchmark solution for numerical methods. Four examples illustrate the applications of the analytical method, 
furthermore finite element computations verify the validity of the presented beam formulation. 
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