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Abstract: As the level of complexity of modern rotating machinery grows, the need for an effective and efficient maintenance process increases as well. In 
the last decade, researchers all over the world have shown strong aspiration to optimize the diagnostics phase in rotating machinery. This paper highlights 
some of the latest research on the detection of typical faults in rotating machinery such as mass rotor imbalance, misalignment, rub and looseness, bearing 
and gear faults. Various techniques for condition monitoring have been researched, and in this paper, they have been classified into three groups: physics–
based, data–driven, and physics–based data–driven methods. Although most of the research falls into the first two prior mentioned groups, an intent to 
introduce a novel method, their symbiosis, has emerged in the last few years. The great potential for future work on physics–based data–driven methods in 
the field of rotating machinery has been briefly discussed. 
Keywords: physics–based, data–driven, physics–based data–driven, diagnostics, rotating machinery 
 

1. INTRODUCTION 
Dynamical systems are systems that evolve and change their state with time over a state space according to a 
fixed rule. In order to ensure a safe and efficient operation of the dynamical system, a variety of tasks have to be 
successfully completed. First, the modeling phase has to provide a suitable model for the dynamical system, 
allowing a better understanding of its behaviour. Next, the control of the dynamical system has to manage, 
command, direct, or regulate its behaviour using control loops in order to achieve certain tasks. The diagnostic 
phase identifies the dynamical system's present and potential faults, and the prognostics phase predicts the 
remaining useful life of the system. An example of widely used dynamical systems is the group of rotating 
machines or i.e. rotating machinery. The performance requirements that modern rotating machinery must 
satisfy have introduced a trend toward higher speeds and productivity and more stringent vibration levels [1]. 
Consequently, as the complexity of the performance requirements of the machinery grows, its maintenance 
becomes more demanding and its costs significantly start to grow. For instance, in production systems 
composed of rotating machinery, 15 to 40% [2] of the total costs for the production of the product are due to 
maintenance costs. In order to fulfill the above–mentioned objectives while simultaneously reducing 
maintenance costs, an optimization of the maintenance strategy has to be developed. Condition maintenance 
of machinery includes monitoring its state based on parameters that are considered to be sufficiently sensitive 
to the change in its mechanical state, that is, to the occurrence of faults. The best indicator of the overall current 
state of the machine, which is sensitive to the appearance and development of a certain defect at the earliest 
stages is vibration, Table I [2].  
There are various instruments for vibration measurement, which have noticed rapid technological 
development in recent years. In order to accurately monitor and determine the current state of the machinery 
by measuring its vibrations, a large amount of 
data has to be obtained. That one might 
minimize the time for processing and analysis of 
these data, automation of the process of 
monitoring the condition and identification of 
possible faults is in order. Empowered by the 
learning capability, big databases and model 
computing, artificial intelligence (AI) has 
achieved tremendous success in many different 
fields. A great interest and advancement in 
optimizing traditional maintenance strategies 
have been noted in the past 10 years [3]. By using 
the benefits of AI, the subjective opinion and 
possible human error of the operator would be 
eliminated or minimized. This is especially important in situations when a large number of faults are 
simultaneously present in a machine.  
Intelligent autonomous systems using AI with their powerful learning ability to discover hidden trends and 
patterns from data enable a better understanding of the machine’s behaviour. However, there are a lot of 
challenges in creating an intelligent system for diagnostics of rotating machinery. One of the major challenges 

Table I. Indicators and most common problems in rotating machinery 
 

Temperature Pressure Flow Lubricant 
Analysis Vibrations 

Imbalance     X 
Misalignment X    X 

A damaged rolling 
bearing element X    X 

A damaged 
journal bearing 

element 
X X X X X 

A damaged gear     X 
Looseness     X 

Noise     X 
Cracking     X 
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is that AI requires big databases for training, which could not be always obtained. The other major challenge is 
the poor generalization ability or i.e. the extrapolation characteristic of the purely data–driven method. Data–
driven models do not consider the underlying physics of dynamical systems or in this case the machinery and 
its components. Consequently, it is anticipated that it would eventually fail at generalizing unknown data due 
to the lack of physical understanding. In order to overcome these challenges, recently researchers are starting 
to take great interest in a physics–guided machine learning method. The physics–guided machine learning 
method elaborates the existing physics knowledge of the dynamical system in order to enhance the 
performance of data–driven machine learning. 
Numerous papers study and analyze various methods that enhance the capability to diagnose eventual faults 
and determine the health state of rotating machinery. All methods can be divided into the three above–
mentioned groups: purely physics–based, purely data–driven, and physics–based data–driven method. In the 
next two chapters, existing literature for the two types of models, physics–based models and data–driven 
models of the rotating machinery, is studied in detail. The greatest part of the existing literature in the field of 
diagnostics of rotating machinery focuses on these two methods [4]. Nevertheless, in the last few years, an idea 
to combine both methods into a physics–
guided machine learning method for fault 
diagnostics has emerged. In the fourth chapter 
of this paper, the existing literature for physics–
guided machine learning models is reviewed. 
The selected faults of rotating machinery whose 
existing literature has been analyzed are 
imbalance, misalignment, rub and looseness, 
bearing faults, and defects in gears. These faults have been chosen due to the fact that they are some of the 
most common problems which occur in most types of rotating machinery, and the interlinking nature between 
them, Table II [2]. 
2. PHYSICS–BASED MODELS OF ROTATING MACHINERY 
Physics–based models are constructed using the underlying physics of the given system. Depending on the 
specific application a high–fidelity or low–fidelity model can be defined. Recently, a number of authors have 
been exploring various methodologies for using physics–based models of rotating machinery for prognostic 
health management (PHM) [3], Appendix I. These types of models assess the health of the system by solving a 
set of equations derived from physics, engineering, and science knowledge, and can find application in 
diagnostics [5].  
During the diagnostics phase, a fault is detected by comparison between the obtained outputs from the 
physics–based models and the measurements from the real system [6]. Han, T. et al. [7] simulate imbalance fault 
and dynamic balancing by virtual prototyping technology based on the imbalance mechanism and balancing 
theory. The vibration signal is acquired by virtual sensors, and motion and dynamic analysis are carried out using 
ADAMS software. Oppenheimer, C.H. and Loparo, K.A. [8] propose a physics–based approach for diagnostics of 
rotor imbalance using filters i.e., observers based on physical models of various machine–fault combinations. 
The model for generated vibration by an imbalance of a rotor captures two rotor modes, namely the first 
bending mode excited by static imbalance and the second bending mode excited by dynamic imbalance. 
Sudhakar, G.N.D.S. and Sekhar, A.S. [9] perform a physics–based simulation of imbalance as a fault by describing 
a model–based method. Two different approaches, equivalent loads minimization and vibration minimization 
methods are applied for the identification and localization of an imbalance fault in a rotor system. Ogbonnaya, 
E.A. [10] creates а software based on the underlying physics of a gas turbine rotor shaft and its most frequent 
faults. The “MICE” software which is an acronym for misalignment, imbalance, crack and eccentricity of a rotor 
shaft, identifies and differentiates these faults. Bahaloo, H. et al. [11] derive a model for coupling misalignment 
considering the presence of both the angular and parallel misalignments in the coupling location. Sekhar, A.A. 
and Prabhu, B.S. [12] study the effects of coupling misalignment on vibrations of rotating machinery by using 
FEM analysis. Various papers [13,14] have provided vibration identification charts that indicate that the coupling 
misalignment, generally, produces a frequency that is twice the speed frequency of the shaft.  Rub and 
looseness create complex vibration signals which are difficult to diagnose using traditional methods. 
Nonetheless, these frequently present faults have been attractive for scientific research and have been studied 
in detail. Chen, G. [15] outlines a dynamic system model of a rotor–bearing–stator system embedded with a 
rubbing fault. Han, Q. et al. [16] develop a finite element (FE) model of a rotor system with two discs and 
consequently conduct numerical simulations. Transverse vibrations of the rotor system under three typical 

Table II. Typical vibration problems and their approximate percentage of occurrence 
Imbalance 40% Fan and duct turbulence 5% 

Misalignment 30% Gears 2% 
Resonance 20% Rub and looseness 5% 
Bearings 10% Torsional vibrations 3% 

Motor vibrations 8% Radial throw 2% 
Cavitation in pumps 2% Belts and Pulleys 4% 
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cases with different rotating speeds, rub–impact clearances, rub–impact rod stiffness, and rub frictions have 
been studied. Luo, Y. et al. [17] develop a dynamic model of the nonlinear elastics rotor–bearing system with 
coupling faults of pedestal looseness and rub impact. Liu, Y. et al. [18] define a mechanical model and finite 
element model of a dual–disc rotor system with looseness–rubbing coupling fault. McFadden, P.D. and Smith, 
J.D. [19] develop a model to describe the vibration produced by a single point defect on the inner race of a 
rolling element bearing under constant radial load. The model analyses the effects of the bearing geometry, 
shaft speed, bearing load distribution, transfer function, and the exponential decay of vibration. Patel, V.N. et al. 
[20,21] develop a model for the generated vibrations by deep groove ball bearings having multiple defects on 
the races. Sopanen, J. and Mikkola, A. [22] propose a dynamic model of a deep–groove ball bearing with six 
degrees of freedom. The geometry, material properties, and diametral clearance of the bearing are given as the 
input to the proposed model. In an additional paper, the same authors [23] implement, analyze and validate 
the proposed model using a commercial multi–body system software application (MSC. ADAMS). Kiral, Z. and 
Karagülle, H. [24] model the dynamic loading of a rolling element bearing structure by a computer program 
developed in Visual Basic programming language. Wang, J. et al. [25] present a new model–based approach to 
integrated fault diagnosis and prognosis for wind turbine bearings. Wang, C. et al. [26] develop a mathematical 
model for bearing fault detection based on a modified winding function approach (MWFA). Yan, R. and Gao, 
R.X. [27] present an energy–based approach for defect diagnosis of rolling bearings, which enhances the ability 
of the continuous wavelet transform in feature extraction from vibration signals. Additionally, an experimental 
validation using data collected from two defect–seeded ball bearings has been presented. Ruan, D. et al. [28] 
develop a Modelica model for the whole bearing test rig, including the test bearing, driving motor and load. 
First, a five degree–of–freedom (5–DoF) model was proposed for the test bearing to identify the normal bearing 
dynamics. Next, a fault model was applied to characterize the defect position, size and shape of multiple defects. 
Cubillo, A. et al. [29] identify the most important failure modes and the models available to represent the 
degradation mechanisms of rotating machinery. More precisely, they consider three typical components of 
rotating machinery: gears, rolling bearings, and hydrodynamic bearings. Apart from the physics–based models 
which have already been applied for rotating machinery, they propose models that can potentially be used in 
the future. Diehl, E.J. et al. [30] develop dynamic gearbox models (DGM) in order to replicate dynamic 
transmission error (DTE), dynamic stresses, stability, noise, and vibration motion of the system. Dadon, I. et al. 
[31] propose a new reliable dynamic model that predicts the vibrations of faulty gear transmission. Hence, the 
effects of the fault could be recognized, the severity of the fault could be identified, and methods for 
characterizing its type could be developed. Eyk, L.V. et al. [32] develop an accurate physical model of the 
gearboxes and their failure modes obtained from the potential energy method (PEM).  
3. DATA–DRIVEN MODELS OF ROTATING MACHINERY 
Nonetheless, there are limitations of physics–based models concerning the costs and accuracy of the obtained 
output. The first limitation of physics–based models for complex systems is the potentially high computational 
costs. Additionally, there is often a necessity to repetitively run the physics–based model in order to perform a 
stochastic analysis. The other limitation refers to the assumptions and simplifications of the physics–based 
model that would have to be made. The accuracy of the model decreases when it operates in a field that was 
not covered as a result of its simplification. The effects of these limitations can be reduced by implementing the 
second type of model, data–driven models.  
Vibration signals collected from a rotating machine using vibration transducers are often in the time domain 
[33]. Generally, the signals consist of a large collection of responses from several sources in the rotating machine 
and some background noise. Therefore, preprocessing of the signal, filtering, and extraction of certain attributes 
of the signal that describe its essence, have to be performed. In the machine learning community, these 
attributes are also called characteristics, signatures, or features [33]. There are numerous techniques for manual 
feature extraction in the time domain using statistical parameters, in the frequency domain as spectrum 
features or in the time–frequency domain. Nevertheless, extracting useful features from a large, noisy dataset 
of vibration signals is a highly demanding task. Therefore, techniques that perform automated feature 
extraction such as deep learning (DL) are attracting great attention in the scientific world. Deep learning 
technique uses specialized algorithms and deep neural networks which can automatically extract features from 
vibration signals.  Once the vibration data analysis has been performed, diagnostics of the rotary machinery is 
in order. This phase involves fault detection and identification by using a classifying algorithm to categorize the 
data signals into different classes of faults, by employing their extracted features.  
Most of the data–driven models determine and identify certain faults in rotating machinery in scenarios when 
multiple faults are simultaneously present. Firstly, a review of existing literature in the field of several machine 
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learning classifying algorithms used for diagnostics of previously mentioned faults in rotating machinery is 
performed, Appendix II. The reviewed classifying algorithms include neural networks (NN), k–nearest 
neighbours (k–NN), support vector machine (SVM) and random forest (RF). For instance, Hoffman, A.J. and Van 
Der Merwe [34] use a combination of three different neural network classification techniques: Kohonen Network 
(KNN), nearest neighbour rule (NNR), and radial basis function neural network (RBFNN) to classify faults. During 
the manual feature extraction phase, six time domain and four frequency domain features have been extracted 
and various combinations of features have been tested. The conclusion from this paper states that bearing 
defect makes it impossible to determine the degree of imbalance based on a single vibration feature. 
Furthermore, Hang, J. et al. [35] present an approach for fault diagnosis in a wind turbine based on a multi–class 
fuzzy support vector machine (FSVM) classifier. Empirical mode decomposition (EMD) is applied in order to 
extract time–frequency domain features from the signal. The acquired vibration signals are a representation of 
four health conditions of the machine: normal, shaft imbalance, shaft misalignment, and shaft imbalance and 
misalignment. There are numerous authors who use SVM in order to classify faults and compare various feature 
extraction techniques [36–42]. Baccarini, L.M.R. et al. [36] studied the application of independent component 
analysis (ICA) and SVM to detect and diagnose induction motor faults. The used data–set consists of acquired 
vibration signals which represent a no–fault condition and three types of mechanical faults including radial and 
angular shaft misalignment, looseness, and rotor imbalance, and their combination. Yuan, S.F. and Chu, F.L. [37] 
propose a new multi–class classification of SVM named ‘one to others’ algorithm which is designed for solving 
multi–class recognition problems. Acquired vibration signals in the time domain are transformed into the 
frequency domain using fast Fourier transformation (FFT) and the obtained frequencies are divided in nine 
bands. Using principal component analysis (PCA) the nine–dimensional fault feature vectors are transformed 
into two–dimensional fault feature vectors. Wu, T.Y. et al. [41] differentiated between broken, worn, chipping or 
healthy teeth of a gear by using SVM technique. Yang, D. et al. [42] measured vibration acceleration signals of 
normal gear, chipped tooth gear, and missing tooth gear and extracted fault features based on the EMD and 
the kernel function.  
The recognition rates of gearbox faults have been improved by using the SVM classification model which has 
been optimized by the bee colony algorithm. Numerous authors investigate the possibility to develop new 
classifying algorithms by combining SVM and various machine learning algorithms [43–46]. Widodo, A. et al. 
[43] perform fault diagnosis of low–speed bearing using multi–class relevance vector machine (RVM) and SVM. 
The classification for fault diagnosis was conducted using prior linear feature extraction using ICA and PCA 
techniques and without prior feature extraction. The accuracy of the results significantly increases when prior 
linear feature extraction techniques have been used. Zhang, Y. et al. [44] propose a novel fault diagnosis 
approach based on the non–linear dimensionality reduction method of isometric feature mapping (ISOMAP). 
Only one parameter i.e., the number of neighbors k needs to be set for ISOMAP and its value has been 
empirically determined in a way that provides the best classification result. Two vibration datasets containing 
signals of a rotor with mass imbalance, misalignment, and rub impact faults; and rolling bearing data, with a 
normal condition, IR fault, and OR fault – are used to verify the fault–classification performance of the proposed 
method. Three classifying techniques have been used: minimum–distance classifier, k–NN, and SVM with a 
radial basis function (RBF) kernel. Saravanan, N. et al. [45] deal with the effectiveness of wavelet–based time 
features for fault diagnosis of a gearbox using artificial neural network (ANN) and proximal support vector 
machines (PSVM). Han, T. et al. [46] show that feature selection is critical to the success of machine fault 
intelligent diagnosis. In order to present a comprehensive comparison, three classes of popular features have 
been extracted for further model training: time–domain statistical features (TDF), frequency–domain statistical 
features (FDF), and multiple scale features (MCF). Additionally, the authors perform a comparison of the 
accuracy for classifying bearing and gear faults of RF, ANN, and SVM. It can be concluded that different feature 
extraction methods lead to different overall diagnostic results and accuracy. Without human intervention, the 
complexity of feature selection and diagnostic uncertainty of traditional feature extraction methods could be 
depressed [47]. Similarly, numerous papers try to investigate ANN classifying algorithms and its variations [48–
53]. Vyas, N.S. and Satishkumar, D. [48] discuss an artificial neural network (ANN) simulator built for the 
identification of faults in rotating machinery. Five different primary faults and their combinations are introduced 
in the experimental set–up: rotor with no fault, rotor with mass imbalance, rotor with bearing cap loose, rotor 
with misalignment, and rotor with both mass imbalance and misalignment. Kaewkongka, T. et al. [49] propose 
a method for rotor dynamic machine condition monitoring using continuous wavelet transform (CWT) as a 
feature extraction technique and ANN as a classification algorithm. Combinations of four types of machine fault 
conditions are investigated: balanced shaft, imbalanced shaft, shaft with a misalignment, and faulty bearing. 
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Additionally, combinations of four health conditions of the bearings – normal, cage fault, inner race fault, and 
outer race fault are analyzed in this paper. Ngolah, C.F. et al. [50] concentrate on identifying rub and looseness 
faults based on a three–layer ANN. Acquired signals are processed by a signal processor to extract characteristic 
vibration signals of ten key performance indicators. Lei, Y. et al. [51] propose a new empirical model 
decomposition (EMD)–based method for fault diagnosis of rotating machinery. The method is used for the 
diagnosis of rub–impact of a power generator and early rub–impact of a heavy oil catalytic cracking machine 
set. Bin, G.F. et al. [52] propose a method that combines CWT and EMD for extraction of fault feature frequency 
and neural network for rotating machinery early fault diagnosis. Rajeswari, C. et al. [53] use exact feature 
selection technique and back propagation neural network (BPNN) for gear fault classification algorithm. 
Moreover, state–of–the–art deep neural network learning classifying algorithms that have been used in 
machine fault diagnosis is also performed, Appendix II. More precisely, existing literature in the field of machine 
fault diagnosis using autoencoder–based deep neural networks (DNN) [55–60], convolutional neural networks 
(CNN) [54,61–64], and deep belief networks (DBN) [47,59,65], is reviewed. Guo, S. et al. [54] propose a novel 
diagnosis method that uses a convolutional neural network (CNN) to directly classify the continuous wavelet 
transform (CWT). CWT is a time–frequency domain transform of the original signal and can contain most of the 
information of the vibration signals. The acquired vibration signals for the experiment are rotor imbalance, rotor 
misalignment, bearing block looseness, and contact rubbing. Sun, W. et al. [61] distinguish four types of gear 
faults by introducing a method based on a dual–tree complex wavelet transform (DTCWT) and CNN. Chen, Z. 
et al. [47] and Shao, H. et al. [66] explore the possibilities of a DBN–based fault classifier, which performs an 
automated feature extraction. Guo, X. et al. [60] complement the idea of extracting features automatically 
without significantly increasing the demand for machinery expertise. They manage to maximize accuracy 
without overcomplicating machine structure by developing an adaptive DNN for bearing fault identification. 
Sohaib, M. and Kim, J.M. [55] share a similar goal but develop a different technique that uses autoencoder–
based DNN for bearing fault classification.  
4. PHYSICS–BASED DATA–DRIVEN MODELS OF ROTATING MACHINERY 
Nonetheless, data–driven method or purely–data driven machine learning also faces many limitations for 
example, intensive training data and poor generalization ability. In order to overcome these limitations and take 
advantage of both the physics–based model and data–driven model, in the past few years [70, 71] a novel 
methodology in the field of rotating machinery diagnostics is proposed, the physics–based data–driven 
method. In spite of the fact that recently machine learning models have been greatly studied and implemented 
in the field of machinery diagnostics, a limited research effort has been devoted to incorporating physical 
knowledge into these models [72]. 
Sadoughi, M. and Hu, C. et al. [73] are the first researchers who propose a novel physics–based convolutional 
neural network (PCNN), for fault diagnosis of rotating machinery. Furthermore, the same authors [74] 
concentrate their research using PCNN on fault diagnosis of rolling element bearings. A deep CNN model with 
a physics–based convolutional layer as the first layer for bearing fault identification has been created. 
Additionally, Lu et al. [75] present a novel physics–based feature weighting (PFW) technique that leverages the 
fault characteristic frequencies of a bearing to weigh the vibration features based on the amount of fault–
related information that they are expected to carry. Shen, S. et al. [76] prove the ability to increase the 
identification accuracy of the model by using test data from 18 bearings on an agricultural machine operating 
in the field, and data from bearings on a laboratory test stand. The results considering the identification accuracy 
of the PCNN are compared to the accuracy of SVM, RF, and CNN and show a great improvement in bearing fault 
detection accuracy which results in reducing the likelihood of false alarms. Additionally, fault characteristic 
frequencies are learned as part of the hyperparameters, as opposed to the previous paper [74] which pre–
computed them and fed them into a PCNN model as pre–defined inputs. 
5. CONCLUSIONS  
Maintenance of rotating machinery is the essential part and the core of every production process and directly 
affects its productivity and quality. As the capabilities and complexity of rotating machinery grow, its 
maintenance becomes more demanding, and its costs significantly start to grow. Therefore, automation of the 
diagnostics phase of rotating machinery, i.e. monitoring of its condition and identification of possible faults is 
crucial for a well–organized production plant. Physics–based models which are based on the physics of the 
given system, are used for the diagnostics of rotating machinery by comparing the obtained outputs from the 
physics–based models and the measurements from the real system. In order to reduce the effects of the 
limitations of physics–based models concerning the complexity, costs, and accuracy of the obtained output, 
data–driven models have been intensively used in the field of rotating machinery diagnostics. However, this 
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method has its own limitations concerning the need for large databases and intensive training data, and poor 
generalization ability. In an effort to get the most out of the two methods, a physics–based data–driven method 
which is gained as a combination of the prior mentioned methods has been studied in the past few years. 
Physics–based data–driven methods have already been intensively studied and used for the automation of 
feature extraction and detection in civil engineering [77]. Nevertheless, evidently, only a few authors research 
the use of physics–based data–driven methods in the field of rotary machinery diagnostics, and only in the last 
few years. A wide area of research awaits to investigate the applicability of various proposed physics–based 
machine–learning methods identification of various other rotary machinery faults. 

Appendix I – State of the art – Physics–based models for diagnostics of faults of rotating machinery 
Research papers Fault Fault identification method Theoretical background Validation stage 

Han, T. et al. [7] Mass imbalance of Rotor Virtual prototyping – ADAMS 
software Imbalance mechanism and balancing theory experiment 

Oppenheimer, C.H. and 
Loparo, K.A. [8] Mass imbalance of Rotor Integrated filter–based method 

(observers) and life models 
Physical relationships between fault severity 

and machine signatures – 

Sudhakar, G.N.D.S. and 
Sekhar, A.S. [9] Mass imbalance of Rotor Equivalent loads minimization 

method FEM for flexural vibrations experiment 

Ogbonnaya, E.A. [10] 

Misalignment, 
imbalance, crack and 
eccentricity of rotor 

shafts 

Numerical simulation using MICE 
software 

Newton’s Second law (beam theory), Inagaki 
equations ANN 

Bahaloo, H. et al. [11] Coupling misalignment Ritz series method Harmonic Balance Method (HBM) – 
Sekhar, A.A. and Prabhu, 

B.S. [12] Coupling misalignment Higher order finite element model FEM analysis for flexible structures – 

Chen, G. [15] Rubbing of a rotor–
bearing–stator system 

Rotor–Ball Bearing–Stator Coupling 
Dynamics Model 

Euler free beam model of equal–section, 
Hertz nonlinear contact force, Zhai method experiment 

Han, Q. et al. [16] Rubbing on a dual–disc 
rotor system 

FEM model, Hilbert–Huang 
transform (HHT) method 

Euler–Bernuli beam model, Empirical mode 
decomposition (EMD), Hilbert analysis experiment 

Luo, Y. et al. [17] 
Rubbing and looseness 

on rotor–bearing 
system 

Dynamic model of the nonlinear 
elastics rotor–bearing system 

Reynolds equation, rub–impact equation, 
motion differential equation – 

Liu, Y. et al. [18] 
Rubbing and looseness 
in rotor–sliding bearing 

system 

Nonlinear finite element method, 
Lagrange method 

Nonlinear oil film force, looseness stiffness 
model, Hertz contact theory – 

McFadden, P.D. and 
Smith, J.D. [19] 

Inner race of rolling 
bearing 

Model for Single point defect on 
inner race 

Effects of bearing geometry, shaft speed, 
bearing load distribution, transfer function 

and the exponential decay of vibration 
experiment 

Patel, V.N. et al. [20,21] Inner and outer race of 
rolling bearings 

Model for multiple defects on inner 
and outer race 

Equations of motion, Runge–Kutta method, 
time and frequency domain analysis experiment 

Sopanen, J. and Mikkola, 
A. [22,23] 

Inner and outer race of 
rolling bearings 

Dynamic model of localized and 
distributed defects 

Non–linear Hertzian contact deformation and 
elastohydrodynamic (EHL) lubrication ADAMS sim. 

Kiral, Z. and Karagülle, H. 
[24] 

Ball–fault of ball 
bearings 

Numerical simulation using package 
I–DEAS 

FEM analysis, time and frequency domain 
analysis – 

Wang, J. et al. [25] Bearing of wind turbine Model based method of integrated 
fault diagnosis and prognosis Paris law experiment 

Wang, C. et al. [26] Rolling bearing Model based on numerical 
simulation in MATLAB Modified winding function approach (MWFA) – 

Yan, R. and Gao, R.X. 
[27] 

Inner and outer race of 
rolling bearings 

Quantitative energy–based feature 
extraction method 

Wavelet transform, envelope extraction, 
Fourier transform experiment 

Ruan, D. et al. [28] Rolling bearing Nonlinear 5–DoF Model of a 
bearing, Bearing Defect Model Newton’s second law, Hertz contact theory CNN 

Diehl, E.J. et al. [30] Gear fault Dynamic gearbox models, harmonic 
wavelet transforms (HWT) 

Dynamic transmission error, dynamic stresses, 
stability, noise, vibration motion – 

Dadon, I. et al. [31] Gear fault Generic dynamic model Equations of motion, gear mesh stiffness, 
damping experiment 

Bankert, R.J. et al. [36] Mass imbalance and 
misalignment 

Finite Element rotor dynamics 
model 

Timoshenko beam element, Reynold's 
equation, FEM analysis experiment 

Appendix II – State of the art – Data–Driven models for diagnostics of faults of rotating machinery 
Research papers Fault Pre–processing technique Classification algorithm 

Hoffman, A.J. and Van Der 
Merwe [34] 

Mass imbalance of rotor, bearing 
fault Time domain and frequency domain analysis 

Kohonen Network (KNN), nearest 
neighbour rule (NNR), and radial basis 

function neural network (RBFNN) 

Hang, J. et al. [35] Shaft imbalance and misalignment Empirical mode decomposition (EMD) multi–class fuzzy support vector machine 
(FSVM) 

Baccarini, L.M.R. et al. [36] Rotor imbalance and sshaft 
misalignment, looseness Independent component analysis (ICA) Support vector machine (SVM) 

Yuan, S.F. and Chu, F.L. [37] 
Rotor imbalance and 

misalignment, rub and looseness, 
bearing and gear fault 

Fourier transformation (FFT), principal 
component analysis (PCA) SVM 
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Kang, M. et al. [38] Bearing fault Kernel feature analysis SVM 
Liu, Z. et al. [39] Rolling bearing fault empirical model decomposition (EMD) SVM 

Shen, C. et al. [40] Rolling bearing fault time–domain and frequency–domain 
statistical features SVM 

Wu, T.Y. et al. [41] Gear fault time–domain and frequency–domain 
analysis SVM 

Yang, D. et al. [42] Gear fault EMD and the kernel function SVM 
Widodo, A. et al. [43] Bearing fault ICA and PCA Relevance vector machine (RVM) and SVM 

Zhang, Y. et al. [44] Mass imbalance, misalignment, 
rub, rolling bearing Isometric feature mapping (ISOMAP) 

Minimum–distance classifier, k–NN, and 
SVM with a radial basis function (RBF) 

kernel 

Saravanan, N. et al. [45] Gear fault wavelet–based time (WT) Artificial neural network (ANN) and 
proximal support vector machines (PSVM) 

Han, T. et al. [46] Rolling bearing, gear fault 
Time–domain statistical features (TDF), 

frequency–domain statistical features (FDF) 
and multiple scale features (MCF) 

RF, ANN and SVM 

Chen, Z. et al. [47] Bearing fault – DBN 
Vyas, N.S. and Satishkumar, D. 

[48] 
Mass imbalance of Rotor, bearing 

fault, shaft misalignment Time domain and frequency domain analysis Artificial neural network (ANN) 

Kaewkongka, T. et al. [49] Mass imbalance of Rotor, bearing 
fault, shaft misalignment Continuous wavelet transform (CWT) ANN 

Ngolah, C.F. et al. [50] Rub and looseness Time domain and frequency domain analysis ANN 
Lei, Y. et al. [51] Rub EMD ANN 

Bin, G.F. et al. [52] Rotor imbalance and 
misalignment, rub and looseness CWT and EMD ANN 

Rajeswari, C. et al. [53] Gear fault WT Back propagation neural network (BPNN) 

Guo, S. et al. [54] 
Rotor imbalance, rotor 

misalignment, bearing block 
looseness, and contact rubbing 

WT Convolutional neural network (CNN) 

Sohaib, M. and Kim, J.M. [55] Bearing fault – Autoencoder–based DNN 
Zhou, F. et al. [56] Rolling bearing fault FFT DNN 
Mao, W. et al. [57] Rolling bearing fault FFT DNN 

Qi, Y. et al. [58] Rolling bearing and gear fault EEMD, AR DNN 
Shao, H. et al. [59] Rolling bearing fault – DBN 
Guo, X. et al. [60] Bearing fault – Adaptive deep neural networks (DNN) 

Sun, W. et al. [61] Gear fault dual–tree complex wavelet transform 
(DTCWT) CNN 

Verstraete, D. et al. [62] Bearing fault STFT,WT, and HHT CNN 
Jing, L. et al. [63] Gear fault FFT CNN 

Wang, P. et al. [64] Gear fault WT CNN 
Tao, J. et al. [65] Bearing fault – Deep belief network (DBN) 
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