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Abstract: The paper deals with a two-dimensional boundary value problem of steady-state heat conduction in non-homogeneous hollow elliptical domain. 
First one is the layered elliptical domain, the thermal conductance in each elliptical rings is constant. The layered non-homogeneous domain is considered as 
a union of elliptical rings which have different material properties. The boundary curves of elliptical rings are confocal ellipses. In the second case, the 
functionally graded type of non-homogeneity is considered, the thermal conductance is a smooth function of a curvilinear coordinate. All results of the paper 
are based on Fourier's theory of heat conduction in non-homogeneous solid bodies. 
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1. INTRODUCTION 
Numerous studies and textbooks of heat transfer deal with the steady state thermal conduction in non-
homogeneous solid bodies [1-6]. In this paper a two-dimensional boundary-value problem of steady-state 
heat conduction in non-homogeneous hollow elliptical domain is considered. The boundary curves of the 
hollow elliptical domain are confocal ellipsis. Bagda and Khobragade [6] determine the temperature 
distribution in a finite elliptical cylinder with the help of Mathien transform and Marchi-Fasulo transform 
methods. They considered a nonsteady-state heat conduction problem. Another paper of Bagda and 
Khobragade [12] presents the theoretical treatment of the temperature field in a hollow elliptical cylinder 
due to partially distributed heat supply on the outer elliptical boundary surface. Integral transform 
techniques have been used to obtain the solution of the considered steady-state heat conduction 
problem. Heat conduction in elliptical cylinders and cylindrical shells is studied by Dicker and Friedman [9]. 
They obtained the solution by means of Galerkin method, used together with the Laplace transform for 
the transient temperature distribution in elliptical domain and cylindrical shell. A one-term and three-term 
approximations are employed for the ellipse and a one-term approximation of cylindrical shell. Lopata et. 
al., [10] calculated the values of heat transfer coefficient from the wall of the elliptical pipe to the water 
flowing inside were determined using the data from conducted measurements under the condition of 
constant heat flux. In paper by Khan et. al., [11] an analytical solution is given for a transient heat conduction 
problem for confocal elliptical region using elliptical curvilinear coordinates. The obtained solution for 
temperature field was applied to solve a plane thermal stress problem. 
In this paper a two-dimensional stead-state heat conduction problem in non-homogeneous hollow 
elliptical domain is considered. Two types of non-homogeneity are studied. The first one is a layered 
elliptical domain in which the thermal conductance is piecewise constant function of a curvilinear 
coordinate and the second one is a continuous function 
of one curvilinear coordinate which describe the 
boundary contour of the considered hollow elliptical 
region. 
2. CURVILINEAR COORDINATES 
Figure 1 shows the hollow elliptical domain A, whose 
boundary curves ∂A1  and ∂A2 are confocal ellipses. 
The common focuses of boundary ellipses are point F1 
, F2 (see Figure 1).  
The following equation is valid 

c2 = a12 − b12 = a22 − b22,        F1F2 = 2c.        (1) 
To formulate the steady-state heat conduction 
problem it is necessary to introduce an orthogonal 
curvilinear coordinate system. The definition of 
curvilinear coordinates ρ,  α is given by the following 
equations 

 
Figure 1. Hollow elliptical domain 
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x = �ρ + c2

4ρ
� cosα , y = �ρ − c2

4ρ
� sin α , ρ1 ≤ ρ ≤ ρ2  0 ≤ α ≤ 2π.   (2) 

Equation of boundary curve ∂Ai (i = 1,2) in curvilinear coordinates ρ and α is  
ρ  =  ρi  =  const.    0  ≤  α  ≤  2 π.     (3) 

From Eqs. (2) and (3) it follows that the semi axes of the boundary ellipses are  

ai = �ρi2 + c2

2
+ c4

16ρi
2 , bi = �ρi2 −

c2

2
+ c4

16ρi
2   (i = 1,2).                    (4) 

The unit vectors of curvilinear coordinate system (ρ,α) are [7] 

𝐞𝐞ρ = 1

��∂x∂ρ�
2
+�∂y∂ρ�

2
�∂x
∂ρ
𝐞𝐞x + ∂y

∂ρ
𝐞𝐞y� = 1

Hρ
��1 − c2

4ρ2
� cosα𝐞𝐞x + �1 + c2

4ρ2
� sin α� 𝐞𝐞y,                      (5) 

where 

Hρ
2 = 1 + c4

16ρ4
− c2

2ρ2
cos 2α,           (6) 

𝐞𝐞α = 1

��∂x∂α�
2
+�∂y∂α�

2 �
∂x
∂α
𝐞𝐞x + ∂y

∂α
𝐞𝐞y� = 1

Hα
�−ρ �1 + c2

4ρ2
� sinα𝐞𝐞x + ρ �1 − c2

4ρ2
� cosα𝐞𝐞y�,               (7) 

where 
Hα
2 = ρ2Hρ

2.           (8) 
The curvilinear coordinate system ρ,α is an orthogonal coordinate system, since 

𝐞𝐞ρ ⋅ 𝐞𝐞α = 0     ρ1 ≤ ρ ≤ ρ2    α1 ≤ α ≤ α2.          (9) 
On the line element of α = const. curve is 

dsα = Hρdρ,            (10) 
and on the line element of ρ = const. curve is  

dsρ = Hαdα = ρHρdα.          (11) 
The expression of area element dA in the (ρ,  α) curvilinear coordinate system is as follows [7] 

dA = HρHαdρdα = ρHρ
2dρdα.                (12) 

Let F = F(ρ,  α) be an arbitrary differentiable function of its arguments ρ and α. The gradient of F = F(ρ,  α) 
in curvilinear coordinates ρ and α can be represented as [7] 

∇F = 1
Hρ

∂F
∂ρ
𝐞𝐞ρ + 1

Hα

∂F
∂α
𝐞𝐞α.           (13) 

The divergence of the two-dimensional vector field f = fρ(α,  ρ)𝐞𝐞ρ + fα(α,  ρ)𝐞𝐞α can be expressed as 

∇ ⋅ 𝐟𝐟 = 1
HρHα

� ∂
∂ρ
�Hαfρ� + ∂

∂α
�Hρfα��.        (14) 

In Eqs. (13) and (14) 

∇= 1
Hρ

∂
∂ρ
𝐞𝐞ρ + 1

Hα

∂
∂α
𝐞𝐞α            (15) 

is the del operator and the dot between two vectors in Eq. (14) denotes the scalar product. 
3. FORMULATION OF THE HEAT CONDUCTION BOUNDARY VALUE PROBLEM 
According to the Fourier's theory of heat conduction in solid body we have next equations 

𝐪𝐪 = −k∇T,  ∇ ⋅ 𝐪𝐪 = 0,                          (16) 
where T = T(ρ,  α) is the temperature field, 𝐪𝐪 = qρ(ρ,  α)𝐞𝐞ρ + qα(ρ,  α)𝐞𝐞α is the heat flux vector and k = k(ρ,  α) 
is the heat conduction coefficient. In Eq. (16) it is assumed that there are no internal heat sources. The 
boundary temperature is prescribed, that is we have 

T(ρ1,  α) = T1,  T(ρ2,  α) = T2,  0 ≤ α ≤ 2π.                          (17) 
It is assumed that the temperature field and the thermal conductance depend only on the curvilinear 
coordinate ρ. In this case from Eq. (16) it follows that 

𝐪𝐪 = −k(ρ) 1
Hρ

dT
dρ
𝐞𝐞ρ.                     (18) 

Application of Eq. (14) gives 
d
dρ
�ρk(ρ) dT

dρ
� = 0  ρ1 ≤ ρ ≤ ρ2.               (19) 

The solution of the boundary value problem formulated in Eqs. (18) and (19) can be represented as  

T(ρ) = T1 + (T2 − T1)
∫ dp

pk(p)
ρ
ρ1

∫ dρ
ρk(ρ)

ρ2
ρ1

            ρ1 ≤ ρ ≤ ρ2.                          (20) 

The overall heat transfer coefficient in steady state heat conduction problem is an important structural 
property of a solid body in which the heat is flowing between two separated parts of its boundary surfaces. 
From the higher temperature boundary part of the solid body to the lower temperature boundary part of 
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the solid body the process of heat flow is characterized by the overall heat transfer coefficient Λ, whose 
definition is given by Eq. (21) 

Q = Λ(T1 − T2)  T1 > T2,        (21) 
where Q is the heat flow in unit time and T1 and T2 are the boundary temperatures and Λ is the overall heat 
transfer coefficient. Expression of Q can be computed according to Eq. (22) 

Q = −∫ �k(ρ)
Hρ

dT
dρ
�
ρ=ρ2

    ∂A2
 dsα = (T1 − T2) 2π

∫ dρ
ρk(ρ)

ρ2
ρ1

.          (22) 

For homogeneous elliptical tube from Eqs. (21) and (22) we obtain 

Λ = 2πk
lnρ2ρ1

  k = const.           (23) 

Combination of Eq. (14) with (23) gives the expression of 
overall thermal transfer coefficient in terms of ai, bi as 

Λ = 2πk

ln�a2+b2a1+b1
�
,   k = const.  (24) 

In the case of degenerate internal boundary elliptical curve, 
when 

a1 = c,  b1 = 0,  a22 − b22 = c2,          (25) 
since we have 

ρi = 1
2

(ai + bi)  i = 1,2.                             (26) 
The formula of overall thermal coefficient can be 
represented as (Figure 2) 

Λ = 2πk

ln�a2+b2c �
.   27) 

4. LAYERED HOLLOW ELLIPTICAL CROSS SECTION 
Figure 3 shows a layered hollow elliptical cross section. A typical layer of the cross section is bounded by 
two ellipses whose equations in curvilinear coordinates ρ and α are 

ρ = ρi = const.  ρ = ρi+1 = const.  0 ≤ α ≤ 2α.                        (28) 
Thermal conductance is constant on each layer, but it has different values, that is 

k(ρ) = ki = const.  ρi−1 < ρ < ρi  0 ≤ α ≤ 2π  (i = 1,2, …  n).                         (29) 

 
Figure 3. Layered elliptical plane domain 

For a typical layer the solution of the heat conduction equation according to Section 3 of this paper can be 
represented as 

T(ρ) = Ti−1 + (Ti − Ti−1)
ln ρ
ρi−1

ln
ρi

ρi−1

  ρi−1 ≤ ρ ≤ ρi,  0 ≤ α ≤ 2π,                (30) 

where 
Ti−1 = T(ρi−1),   Ti = Ti(ρi)  (i = 1,2, …  n)                  (31) 

are the unknown temperatures of the boundary curves of considered elliptical ring. The continuity 
condition for the heat flow at the common boundary of layer Ai and Ai+1 can be formulated as  

aiTi+1 − (ai + bi)Ti + biTi−1 = 0  (i = 1,2, …  n − 1),          (32) 

 
Figure 2. Ribbon insert in elliptical cylinder 
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ai = ki+1
ln
ρi+1
ρi

,   bi = ki
ln

ρi
ρi−1

,   (i = 1,2, …  n).              (33) 

The boundary temperatures on the inner and outer boundary curves of the layered elliptical tube are 
prescribed  

T(ρ0) = T0,   T(ρn) = Tn.     (34) 
The solution of the system of linear Eqs. (34) for T1, T2, …  Tn−1 gives the values of unknown boundary 
temperatures of the component elliptical rings. The heat flown in the unit time on elliptical ring Ai can be 
computed as  

Qi = Λi(Ti−1 − Ti)  (i = 1,2, …  n),           (35) 
where 

Λi = 2πki
ln

ρi
ρi−1

  (i = 1,2, …  n).     (36) 

It is evident that Qi does not depend on i, that is Qi = Q = const. The validity of Eq. (36) follows from Eq. 
(24). We introduce the concept of thermal resistance Ri as  

Ri = 1
Λi

,   (i = 1,2, …  n).     (37) 

The validity of the following equations follows from Eq. (36) and the definition of Ri 
T0 − T1 = QR1 
T1 − T2 = QR2 

… 
Tn−1 − Tn = QRn.              (38) 

By adding the equations of the group (38) we get that 
T0 − Tn = Q(R1 + R2 + ⋯+ Rn) = Q � 1

Λ1
+ 1

Λ2
+ ⋯+ 1

Λn
�.                        (39) 

Eq.(39) shows that the thermal resistance of the connected elliptical rings as a whole body is 
R = R1 + R2 + ⋯+ Rn                  (40) 

and we have for the overall heat transfer coefficient of the composite hollow elliptical domain 
1
Λ

= 1
Λ1

+ 1
Λ2

+ ⋯+ 1
Λn

.                  (41) 

5. NUMERICAL EXAMPLES 
 Layered elliptical tube 
The geometrical data of the five-layer hollow elliptical domain are as follows  

ρ0 = 0.03 m,  ρ1 = 0.04 m, ρ2 = 0.05 m,  ρ3 = 0.06 m, ρ4 = 0.07 m,  ρ5 = 0.08 m.  (42) 
The values of thermal conductance are 

k1 = 50  W
mK

,   k2 = 237  W
mK

,  k3 = 80  W
mK

,   k4 = 35  W
mK

,  k5 = 65  W
mK

.     (43) 
The boundary temperatures are 

T0 = T(ρ0) = 450 K,  T5 = T(ρ5) = 250 K.                 (44) 
The temperature distribution as a function of the curvilinear coordinate is given by the next function 

T(ρ) = �H(ρ − ρ0) − H(ρ − ρ1)� �T0 + T1−T0
lnρ1ρ0

ln ρ
ρ0
� + �H(ρ − ρ1) − H(ρ − ρ2)� �T1 + T2−T1

lnρ2ρ1
ln ρ

ρ1
�  +

�H(ρ − ρ2) − H(ρ − ρ3)� �T2 + T3−T2
lnρ3ρ2

ln ρ
ρ2
� �H(ρ − ρ3) − H(ρ − ρ4)� �T3 + T4−T3

lnρ4ρ3
ln ρ

ρ3
�  +  �H(ρ − ρ4)� �T4 +

T5−T4
lnρ5ρ4

ln ρ
ρ4
�                                                                            (44) 

In Eq. (45) H = H(ρ) is the Heaviside function [7] 

H(ρ −  a)  =   �0   ρ <  a,
1   ρ >  a.     (46) 

The graph of T = T(ρ) as a function of ρ is shown in Figure 4. 
The application of the formula (40) gives the result for the thermal resistance 

R = 0.002 456 211 03 
mK
W

.                                                                                 (47) 

 Elliptical tube made of functionally graded material 
The following data are used in this example 

c = 0.0025 m,  a1 = 0.003 m,  b1 = 0.001 658 312 395 m,  a2 = 0.007 m,  k0 = 50 
W

mK
, 

b2 = 0.006 538 348 415 m,  ρ1 = 0.002 329 156 198 m,  ρ2 = 0.006 769 174 208 m,        (48) 
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k(ρ) = k0 �
ρ
ρ2
�
n

.                                                                                             (49) 

In Eq. (49), n is a material parameter so-called power index. 
The application of Eq. (19) yields to the expression of the temperature field  

T(ρ, n) = T1 + (T2 − T1)
�ρ2
ρ
�
n
− �ρ1

ρ
�
n

1 − �ρ2
ρ1
�
n        ρ1 ≤ ρ ≤ ρ2.                                                    (50) 

The plot of T = T(ρ, n) for the five different values of power index n is shown in Figure 5. 

 
Figure 4. The plot of the temperature as a function of ρ. 

 

 
Figure 5. The plot of the temperature function for five different values of power 

index n (n = −2,−1,0,1,2). 
The thermal resistance R = R(n) can be computed from the following formula 

R(n) =
�ρ1
ρ2
�
−n
− 1

2πnk0
.                                                                                   (51) 

The graph of R = R(n) as a function of power index is given Figure 6, for −3 ≤ n ≤ 3. 

 
Figure 6. The graph of the function R = R(n) for −3 ≤ n ≤ 3.  

Figure 7. The graphs of temperature function for five different value of power index 
in Example 3 (−2 ≤ n ≤ 2). 

 Elliptical tube with prescribed heat input 
In this example the following boundary conditions are prescribed for the hollow elliptical domain 

T(ρ1) = T1  0 ≤ α ≤ 2π,                                                                          (52) 

−k(ρ)
1

Hρ

dT
dρ

=
q

Hρ
  ρ = ρ2  0 ≤ α ≤ 2π.                                                       (53) 

In Eq. (52) q is a given constant. The thermal conductance and other data are the same as in Example 2, 
expect the value of T1. The temperature of the outer boundary ellipse is obtained from the solution of heat 
conduction equation under the boundary conditions (52) and (53). It is easy to prove that the solution of 
the heat conduction equation for functionally graded material when k = k(ρ) is a given smooth function, is 
as follows 

T(ρ) = T1 + qρ2 �
dp

pk(p)

ρ

ρ1

.                                                                          (54) 

The solutions of Eq. (54) for 
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T1 = 800 K  q = −9 × 104  
W
m2                                                                       (55) 

as a function of power index n and the curvilinear coordinate ρ are shown in Figure 7. 
6. CONCLUSIONS 
A two-dimensional boundary value problem of steady-state heat conduction in non-homogeneous hollow 
elliptical region is considered. 
Two types of non-homogeneity are analyzed. The first one is a layered elliptical domain which consists of 
several elliptical rings. The second one is a functionally graded non-homogeneity when the material 
parameter is a continuous function of a curvilinear coordinate. The presented analytical solutions can be 
used in the solution of plane thermoelastic problems when the temperature field can be determined 
independently of deformation. Another possible application of the numerical results of this paper is to 
verify the accuracy of the usual numerical methods such as FEM, finite difference method, boundary 
element method, etc. 
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