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Abstract: This paper is devoted to the vibration and planar stability of curved beams under a constant concentrated radial load, which is exerted at the crown 
point. The behavior of the curved beams is analyzed using a one-dimensional model with the help of a commercial finite element software. The results show 
that the applied method is suitable to predict the behavior of the beams. It turns out that the included angle has a significant influence on the eigenfrequencies 
and buckling loads. Based on the literature review, this paper aims to tackle vibration and stability problems of a curved beam with I-cross section. The article 
presents the effect of the included angle on the vibration and stability of fixed-fixed curved beams. The commercial software Abaqus is used to perform the 
investigations. 
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1. INTRODUCTION 
Curved beams are elements that can be used in several engineering structures, like in modern bridges, or 
in lightweight roof structures. As composite engineering components, these can be found, e.g., as wind 
turbine blades [1]. Since the deformations of a curved beam depend not only on the rotations and radial 
displacements but also on the tangential displacement caused by the curvature change of the structure, 
studying the free in-plane vibration of a curved beam using the beam theory is more difficult than studying 
the equivalent problem in a straight beam [2]. To overcome this complexity and provide engineers with 
practical knowledge, numerous researchers have examined various aspects of curved beam behavior, and 
appropriate information on the vibration and stability problems. It is worth noting that one of the most 
crucial procedures in dynamic structural analysis is free vibration analysis. It determines natural frequencies 
and vibration modes, which are vital to understand the behavior of any structure subjected to dynamic 
loads. The finite element method (FEM) is probably the most widely used method, as demonstrated by 
Petyt and Fleischer [3], who used polynomials and trigonometric form functions to build a thin curved 
element with two nodes. The finite element method was used to estimate the free vibration of generally 
curved beams by Yang et al. [2] and Raveendranath et al. [4]. Paper [5] investigated the vibration of simply 
supported curved beams while taking into account the impact of the curvature on shape modes. For free 
vibration analysis of arches with non-uniform cross-section, Rossi and Laura [6] also used FEM. In study [7], 
Auciello and De Rosa compared different estimate approaches for the free vibrations, such as the Ritz 
method, the Rayleigh–Schmidt method, the Galerkin method, and the finite element method. For both 
linear and nonlinear elastic buckling, many researchers have reported novel findings. Timoshenko and Gere 
[8] and Simitses [9] thoroughly investigated the in-plane linear elastic buckling of arches. With respect to 
the in-plane nonlinear buckling, Pi and Bradford [10,11] addressed the in-plane nonlinear elastic buckling 
and post-buckling of circular shallow arches, taking into account the pre-buckling deformation effect, and 
came up with an analytical solutions. 
Based on the above literature review, this paper aims to tackle vibration and stability problems of a curved 
beam with I-cross section. The article presents the effect of the included angle on the vibration and stability 
of fixed-fixed curved beams. The commercial software Abaqus is used to perform the investigations. 
2. NUMERICAL EVALUATIONS  
Figure 1a shows the considered beam with an arch length S of 21740 mm. The beam has ideal fixed supports 
at the ends. It is assumed that the material is isotropic and homogeneous, which means that the modulus 
of elasticity E and the Poisson ratio ν are constant over the whole arch: E=ESTEEL=2.1e5 N/mm2, ν =0.3. The 
material density is 7830 kg/m3 The axial coordinate z coincides with the centroid of each cross-section, 
while the transverse coordinates are x and y. F is a constant, vertical concentrated radial load at the crown 
point. 
The detailed geometrical data of the doubly symmetric I- cross section are shown in Figure 1b. The section 
depth (h) is 256 mm, flange width (b1=b2) is 146 mm, flange thickness (t1=t2) is 10.9 mm, and the web 
thickness is t3=6 mm. 
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A one-dimensional model is applied in the 
selected FE software to analyze the 
dedicated problem. In all calculations, 100 
elements of type B21 are used to obtain 
converged results of the physical 
problem. 
▓ FREE VIBRATIONS 
We assumed no external force was 
applied to the curved beam (F=0) for free 
vibrations. The results of the three lowest 
natural frequencies as functions of the 
included angle 2Θ are presented in Table 1 as long as 2Θ=[0.5;4.0] rad. It can be seen that the first natural 
frequency continuously decreases as the included angle increases. When 2Θ<=1.5 rad, the second and third 
eigenfrequencies increase as the included angle increases, however, they decrease significantly when 
2Θ>=1.5 rad. 

Table 1. Solutions for the eigenfrequencies in [Hz] 
 

Eigenfrequency 0.5 1 1.5 2 3 4 

1st eigenfrequency 11.455 11.084 10.541 9.878 8.334 6.794 
2nd eigenfrequency 15.057 19.405 19.586 19.227 17.900 16.161 
3rd eigenfrequency 24.265 35.387 35.698 34.915 32.916 30.595 

When 2Θ =1.5 rad, the three mode shapes are displayed in Figure 2. The second mode is a symmetric 
function. 

 

 
Figure 2. The first three mode shapes when 2Θ =1.5 rad 

▓ STABILITY PROBLEM 
The aim of the section is to investigate the influence of the applied force on the displacements of the beam, 
in order to determine the critical values where limit point buckling happens. For certain deep arches, linear 
buckling models might be sufficient to predict the ultimate load. However, the nonlinear material model is 
preferred to be used for a better accuracy. A chart presenting the relationship between loads and 
displacements is undertaken to perform a geometrically nonlinear solution using an arc-length method 
(Riks algorithm). We shall give an example of how to determine the non-linear buckling values using this 

        2Θ [rad] 
 

(a) (b) 
Figure 1. (a) Fixed-fixed curved beam under a constant concentrated vertical load at 

the crown point, (b) the I-shaped cross-section 
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algorithm. When 2Θ=1.5, the load values against the displacement for 38 increments are presented in Table 
2. The maximum force has a value of 1.059e6 N and the corresponding vertical crown point displacement 
is 1.48e3 mm. 

Table 2. Displacement-load values when 2Θ=1.5 rad 
Displ.*103(mm) Load*106(N) Displ.*103(mm) Load*106(N) 

0.00E+00 0 0.96 1.01 
3.50E-07 1E-06 1.02 1.02 
3.19E-06 9.1E-06 1.05 1.03 
1.16E-05 3.3E-05 1.09 1.04 
6.02E-05 0.00 1.24 1.05 
1.36E-04 0.00 1.48 1.059 
2.04E-04 0.00 1.48 1.058 
1.03E-03 0.00 1.48 1.058 
2.33E-03 0.01 1.58 1.05 

0.01 0.01 1.72 1.04 
0.03 0.09 1.81 1.03 
0.04 0.10 1.91 1.02 
0.37 0.67 1.96 1.01 
0.38 0.67 2.07 0.99 
0.51 0.79 2.12 0.98 
0.51 0.80 2.15 0.98 
0.87 0.98 2.18 0.97 
0.87 0.98 2.23 0.96 
0.96 1.01 2.25 0.96 

In accordance with the output data in 
Table 2, Figure 3 shows the displacement 
values (on the horizontal axis) against the 
force (on the vertical axis). The upper limit 
point of the nonlinear equilibrium path is 
obtained when the force reaches its 
maximum on the primary stable branch. 
According to the Riks algorithm, this 
maximum force is the nonlinear buckling 
load sought. This principle is used to 
perform the nonlinear analysis for each 
angle. 
Moving on now to the geometrically linear 
and nonlinear stability analyses, Table 3 
shows the variation of the buckling loads 
as function of the included angle. Nlin denotes the lowest linear buckling load, while Nnlin denotes the 
nonlinear buckling load. We shall introduce a dimensionless critical load Q= Nlin/ Nnlin to study the effect 
nonlinearities and the included angle on the stability problem. 

Table 3. Linear and non-linear critical loads 
Included angle 2Θ [rad] 0.5 1 1.5 2 3 4 
Linear buckling load, Nlin 

*106[N] 
0.519 1.062 1.611 2.189 3.328 3.872 

Non-Linear buckling load, 
Nnlin *106[N] 

0.309 0.682 1.058 1.432 2.278 3.361 

Q [-] 1.682 1.558 1.522 1.528 1.461 1.152 
It can be observed that as the angle 2Θ is increased, the critical load in the case of nonlinear analysis is 40.5-
13.2 % lower than the outcome from linear buckling analysis. So it can be concluded that the linear model 
dangerously overestimates the maximum allowable load. The error is greater for lower angles, i.e., for 
shallow arches. As demonstrated in Figure 4, the dimensionless critical load ratio Q decreases significantly 
while the included angle is increased. The plotted relationship is non-linear. The discrete points of Q are 
denoted by diamonds, and the continuous line is drawn by using a polynomial that fits onto the discrete 
points with two-to-three-digit accuracy. 

 
Figure 3. Relationship between loads and displacements when 2Θ=1.5 rad 
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Figure 4. Dimensionless critical loads against 2Θ 

The following polynomial is fitted onto the discrete point values presented in Table 3. 
 Q = 0.0106(2Θ)4 − 0.1403(2Θ)3 + 0.5554(2Θ)2 − 0.8674(2Θ) + 1.9955 . (1) 

▓ VIBRATIONS OF PRE-LOADED CURVED BEAMS 
In order to investigate the behavior of a loaded curved beams under a constant concentrated load, the 
applied force was set equal to 0,10,…,90% of the nonlinear buckling load (Nnlin) in order to avoid the 
buckling phenomenon. We shall take an example where 2Θ=1.5 and based on Table 2, the nonlinear critical 
load is equal to 1.059e6 N. The effect of this load portion (in shorter, Lp) on the three first three 
eigenfrequencies is presented in Table 4. Here, k= 1,2,3 is the mode number.  
It can be observed that the second column in Table 4 represents the eigenfrequencies for the unloaded 
beams (the same results as in Table 1) and these values decrease gradually with the increase of the load 
level. Figure 5 shows the variation of the first natural frequencies W1 of the loaded curved beams against 
the included angle variation for five LP load portion values. 

Table 4. The effect of the applied force on the eigenfrequencies when 2Θ=1.5 
Lp of 1.059 e6 N 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

1st freq. [Hz] 10.557 10.193 9.812 9.412 8.992 8.538 8.049 7.513 6.887 6.104 
2nd freq. [Hz] 19.613 18.752 17.818 16.802 17.700 14.741 13.119 11.611 9.813 7.536 
3rd freq. [Hz] 35.748 35.227 34.682 34.109 33.504 32.847 32.135 31.346 30.409 29.21 

 
Figure 5. First natural frequency against included angle for different values of Lp 

Polynomial (2) is fitted onto the discrete values of W1(Lp=0,0.3,0.5,0.7,0.9): 
W1(Lp=0,2Θ)=0.0003(2Θ)4+0.056(2Θ)3-0.515(2Θ)2-0.057(2Θ)+11.6, 2Θ ∈ [0.5,4.0]                    (2a) 

W1(Lp=0.3,2Θ)=0.0105(2Θ)4-0.074(2Θ)3+0.04(2Θ)2-0.918(2Θ)+10.89, 2 Θ ∈ [0.5,4.0]                  (2b) 
W1(Lp=0.5,2Θ)=0.02(2Θ)4-0.193(2Θ)3+0.534(2 Θ)2–1.634(2 Θ)+10.33, 2Θ ∈ [0.5,4.0]                   (2c) 

W1(Lp=0.7,2Θ)=0.0363(2 Θ)4-0.387(2Θ)3+1.3(2Θ)2–2.665(2Θ)+9.7, 2Θ ∈ [0.5,4.0]                     (2d) 
W1(Lp=0.9,2Θ)=0.003(2Θ)4-0.017(2Θ)3-0.23(2Θ)2+0.28(2Θ)+6.418, 2Θ ∈ [0.5,4.0]                     (2e) 

A force equal to 50% of the non-linear buckling load is applied to the curved beam when the angle is 1.5 rad 
to reveal the differences in terms of natural frequencies between the loaded and unloaded beams. These 
differences are compared in Table 5. With a value of 26.27%, the second mode relates to the largest 
difference, followed by 18.46 % and 8.13 % in the first and third modes, respectively. 
Figure 6 depicts the first three mode shapes of the loaded beam with Lp=0.5 and 2Θ=1.5 rad. These are 
directly comparable with the unloaded shapes of Figure 2. 
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Table 5. Difference of eigenfrequencies in % between unloaded & loaded beams 
2Θ=1.5 rad W1 [Hz] W2 [Hz] W3 [Hz] 

Unloaded beam(F=0) 10.451  19.586 35.698 
Pre-loaded beam (F=0.5295e6 N) 8.521 14.441 32.795 

Difference (%) 18.46 26.27 8.13 

 
Figure 6. First three mode shapes for a loaded curved beam with Lp=0.5 

The effect of Lp on the first three eigenfrequency ratios Wk/Ŵk is shown in Figures 7,8 and 9 where k is the 
mode number (k=1,2,3). Wk and Ŵk represent the eigenfrequency value of the loaded and unloaded beams, 
respectively. 
Polynomials (3), (4), and (5) are fitted onto the discrete values of Wk/Ŵk (k=1,2,3). Parameter x represents 
the portion of buckling load. The calculations are performed for three different included angles. The 
principle of the calculations is the same for any 2Θ∈ [0.5,4.0]. Polynomials for the first dimensionless 
eigenfrequency ratio W1/Ŵ1: 

W1/Ŵ1(2Θ=0.5,x)=-13.78x6+31.78x5-27.45x4+10.81x3-1.99x2-0.16x+0.9998, x∈ [0,0.9]           (3a) 

W1/Ŵ1(2Θ=1,x)=-1.702x
6
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5
-3.807x

4
+1.655x

3
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2
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6
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5
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4
–1.09x

3
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2
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Figure 7. Function W1/Ŵ1 against load portion 

Polynomial for the second dimensionless eigenfrequency ratio W2/Ŵ2: 

 W2/Ŵ2(2Θ=0.5,x)=9.916x
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Figure 8. Function W2/Ŵ2 against load portion 

Polynomial for the third dimensionless eigenfrequency ratio W3/Ŵ3: 

 W3/Ŵ3(2Θ=4,x)=0.804x
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Figure 9. Function W3/Ŵ3 against load portion 

3. CONCLUSIONS 
In this paper, a finite element analysis was applied to study the in-plane vibration and stability of fixed-fixed 
beams with I cross-section. The eigenfrequency solutions of the unloaded/pre-loaded beams were also 
obtained. Since the model is developed for fixed-fixed curved beams, the dependence of 
eigenfrequencies/buckling loads on the included the angle of the beam has been investigated. It turned 
out that (1) when 2Θ=[0.5,4.0], the first natural frequency decreased as the included angle is increased. (2) 
When 2Θ<=1.5 rad, the second and third eigenfrequencies increased as the included angle increased, 
however, they decreased significantly when 2Θ>=1.5rad. (3) The dimensionless critical buckling load ratio 
Q decreased significantly as the included angle increased. 
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