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Abstract: In recent years, a lot of studies were performed on the mechanics of beams. One of the most important aspects of the computations regarding 
these problems are the stresses and deformations caused by combined mechanical and thermal loads. This paper deals with the determination of the 
deformation of homogeneous isotropic linearly elastic beams under the action of axial load and thermal loading. In our problem prismatic a beam is 
considered, which is subjected to combined thermal and mechanical loads, and our aim is to present the analytical solution to this problem when the 
temperature field is a specific linear function of the cross sectional coordinates. The applied mechanical load consists of an axial load and bending moment 
applied them at the end cross sections of the considered prismatic beam. The thermal loading is obtained from a temperature field which is a linear function 
of the cross–sectional coordinates.  
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1. INTRODUCTION 
Beams are well known structural elements that have been used successfully in various engineering 
applications for their load carrying capabilities. In recent years, a lot of studies were performed on the 
mechanics of beams. One of the most important aspects of the computations regarding these problems 
are the stresses and deformations caused by combined mechanical and thermal loads.  
A lot of books can be found that describe the fundamental equations of beams, furthermore we have 
several sources to tackle thermoelastic problems, such as [1–6]. There are a lot of papers dealing with the 
stability problems of beams (e.g. [7, 8]). Paper [9] presented the basic equations of heterogeneous beams 
under pure mechanical loading, while [10] used the principle of minimum complementary energy method 
to tackle the thermoelastic problem of prismatic bars. Work [11] considered the thermoelastic problem of 
curved beams under pure thermal loading coming from a temperature field. 

 
Figure 1. The sketch of the problem 

In our problem prismatic a beam is considered, which is subjected to combined thermal and mechanical 
loads, and our aim is to present the analytical solution to this problem when the temperature field is a 
specific linear function of the cross sectional coordinates. Figure 1 shows the beams whose cross section 
is denoted by A, its length is 2L. The centerline of the homogeneous beam is the axis z. The linear theory of 
steady–state thermoelasticity is applied. [1–3]. It is assumed that the solution of the considered one–
dimensional thermoelasticity problem is based on the following displacement field: 

( ) ( ) ( , , ) ,x y zu z v z w x y z= + +u e e e                                                        (1) 

where 

0( , , ) ( ) .u vw x y z w z x y
z z
∂ ∂

= − −
∂ ∂

                                                                (2) 



ANNALS of Faculty Engineering Hunedoara – INTERNATIONAL JOURNAL OF ENGINEERING 
Tome XXI [2023] | Fascicule 3 [August] 

40 |  F a s c i c u l e 3  
ISSN 1584 – 2665 (printed version); ISSN 2601 – 2332 (online); ISSN-L 1584 – 2665 

In Eqs. (1) and (2) x, y and z are the Cartesian coordinates, axis z is the center line of the beam. The vectors 
ex, ey and ez are the unit vectors of the Cartesian coordinate system Oxyz as shown in Fig. 1. The applied 
thermal loading can be derived from the following temperature field 

°
0 0( , ) ( , ) ,x yT x y T x y T t xt yt= − = + +                                             (3) 

where °( , )T x y is the absolute temperature. 
The elastic body is in an unstressed state at the absolute temperature T0 [4, 5] and t0, tx, ty are prescribed 
constants of the temperature change. Let us consider the next notations 
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Equations (3) and (4) can be written in the following forms  

0( , , ) ( ) ,w x y z w z
z

∂
= − ⋅

∂
U R                                                              (5) 

0( , ) .T x y t= + ⋅t R                                                                    (6) 

From equations (1), (2) and (5) it follows that 
0,x y xy xz zyε ε γ γ γ= = = = =                                                               (7) 
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In equations (7) and (8) εx, εy, εz are the normal strains, while γx, γy, γz are the shearing strains. The dot 
between two vectors denotes the scalar product in equations (5), (6) and (8). Application of the one–
dimensional version of the Duhamel–Neumann law [5] gives the following result for the axial normal stress 
σz 
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where α is the coefficient of linear thermal expansion which does not depend on the temperature field in 
the considered interval of temperature change given by equation (9).  
It should be noted that the displacement field formulated in equation (5) satisfies the prescriptions of the 

Euler–Bernoulli beam theory all shearing strains and normal strains 
,x yε ε

 are zero. 
2. DETERMINATION OF THE DISPLACEMENT FIELD 
At first the expressions of applied axial force zN=F e  and bending moment x x y yM M M= +e e  will be 

derived. It is obvious, that 

0
0

( )

dA ,z
A
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σ α∂ = = − ∂ ∫                                                   (10) 

in which E denotes the Young modulus of the linearly elastic material, furthermore 
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where I is the Euler tensor of the cross section A, which is defined as 
( ) ,x x x xy x y y x y y yI I I= + + +I e e e e e e e eo o o o                           (12) 

2 2
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Here, it was used that d .
A

A =∫R 0 In equation (11) the cross between two vectors denotes their vector 

product and in equation (12) the dyadic product of two vectors is indicated by a circle. It is assumed that, 
the displacements satisfy the following homogeneous intermediate boundary conditions at 0z =  
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Integration of equations (10) and (11) under the conditions (14) gives 
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In equation (16) I–1 is the inverse of the Euler tensor, that 
1 1 ,− −⋅ = ⋅ =I I I I E                                                                   (17) 

where E is the second order two–dimensional unit tensor. 
3. COMPENSATION OF THE DEFORMATION CAUSED BY THE THERMAL LOAD WITH MECHANICAL LOADS 
From equation (16) it follows, that  

0 ( ) 0, ,w z L z L= − ≤ ≤                                                              (18) 

if 

0.N AEtα= −  (19) 

It is easy to show that 
( ) 0, .z L z L= − ≤ ≤U                                                              (20) 

( ).zEα= ⋅ ×M I t e                                                                       (21) 

4. NUMERICAL EXAMPLE 
This example deals with the determination of normal force and bending moment vector which compensate 
the deformation caused by the thermal loading. The following numerical data are used 

5 11
0

1 K K1.2 10 , 2 10 Pa, 600 K, 4000 , 8000 .
K m mx yE t t tα −= ⋅ = ⋅ = = =  

A rectangular cross section is considered whose sides are  

0.02 m, 0.04 ma b= =  and 
3 3

, , , 0.
12 12x y xy
a b abA ab I I I= = = =  

A detailed computation gives the following numerical results: 
5

0 1.2096 10 N,N EAtα= − = − ⋅                                                   (22) 
3

537.6Nm,
12x y
a bM E tα= =                                                 (23) 

3

1075.2Nm.
12y x
a bM E tα= − = −                                                    (24) 

5. CONCLUSIONS 
The determination of the deformation of homogeneous isotropic linearly elastic beam under the action of 
axial loading and thermal loading is presented. The applied mechanical load is an axial force and bending 
moment. The thermal loading is obtained from the temperature field which is independent of the axial 
coordinate and a given linear function of the cross– sectional coordinates. The kinematics of the 
deformation of the beam satisfies the requirements of the Euler–Bernoulli’s beam theory. The deformation 
caused by the thermal load can be eliminated by suitably chosen mechanical loading. The equations 
presented in this paper can be used as Benchmark solutions to verify other numerical methods. 
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