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Abstract: In this paper, two methods Adomian Decomposition Method (ADM) and Laplace Adomian Decomposition Method (LADM) were adopted to solve 
the telegraph equation. The essence of this research is to establish a relationship between the two analytical methods. It was observed that the two methods 
were consistent as the results obtained from the numerical examples on the two methods were the same. We also generated the telegraph equation to help 
provide a solid basis for the application of the telegraph equation. The telegraph equation is one of the nonlinear partial differential equation and it’s application 
to solving practical problems were suggested for further studies. 
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1. INTRODUCTION 
The telegraph equation, also known as Transmission Line Equation was first developed by Kirchhoff when 
William Thompson (later Lord Kelvin), a great 19th century mathematical physicist was instrumental in the 
British effort to lay the Trans–Atlantic telegraph cable. Thompson (2013) [1] certainly had done some 
analysis on the Telegraph equation to draw some conclusions for the work. 
In this paper, our emphasis is not on the historical background of the Telegraph equation but on providing 
a comparative analysis of two mathematical analytical methods, which includes Adomian Decomposition 
Methods (ADM) and Laplace Adomian Decomposition Methods (LADM) for solving the Telegraph 
equation. These two methods are suitable for solving nonlinear Partial Differential Equations especially in 
the field of quantum mechanics and fluid mechanics. We can apply these methods to solve problems on 
geochemistry, optical fibres, plasma physics, meteorology and biology. However, other methods have 
been used to solve nonlinear partial differential equations such as the tanh–function method [2], the 
extended tanh–coth method [3], the function. Exxpansion method [3], vibrational iteration method [4], 
the homotopy perturbation method [5], the casoration formulation [6], the extended multiple Riccati 
equations expansion method [7] and the enhanced (G’/G) – Expansion method [8] [9] [10]. We shall x–ray 
the derivation of the derivation of the Telegraph equation with proper analysis of the variables and partial 
derivatives. The two methods (Adomian Decomposition Method (ADM) and Laplace Adomian 
Decomposition Method (LADM)) will be examined. 
Different researchers and scholars have done work on these two methods [11] developed a two–step 
Laplace decomposition method for solving nonlinear partial differential equations [12] [13] focused on 
using laplace decomposition method to solve Klien–Gord equation [14] used a blend or Adomian 
Decomposition Method (ADM) and Laplace Decomposition Method to solve Klein–Gordon equation. Our 
focus is to find the meeting point in order to validate the efficacy of both methods under consideration. 
The two methods will be applied to solve the telegraph equation and conclusions will be drawn based on 
results obtained from the application of both methods. 
2. DERIVATION OF THE TELEGRAPH EQUATION  
Given an infinitesimal piece of telegraph wire of an electrical circuit which consist of a resistor of resistance 
Rdx and a coil of inductance Ldx. If i(x, t) is the current through the wire, the voltage across the resistor 

iRdx with the voltage across the coil is 
∂i
∂t

Ldx. Suppose u(x, t) is the voltage at position x at time t, then the 

change in voltage between the ends of the piece of wire is 

du = −iRdx− ∂i
∂t

Ldx      (1) 

Current can escape through the wire to the ground either from a resistor of conductance Gdx or from a 
capacitor of conductance Cdx. The amount that escapes through the resistor is uGdx 
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Figure 1. Electrical circuit 

Let q=uCdx be the charge on the capacitor, the amount that escapes from the capacitor is qt = utCdx. 
In total; 

di = −uGdx− utCdx      (2) 
Dividing equation (2) by dx 

∂i
∂x

== −uG− utC                 (3) 

Taking the limit of equation (3) as dx → 0, we get the differential equation; 
ix + utC + uG = 0                 (4) 

Dividing equation (1) by dx 
du
dx

= −iR− ∂i
∂x

L               (5) 

Taking the limit of equation (5) as dx → 0, we get the differential equation; 
ux + iR + itL = 0               (6) 

We take the partial derivative of equation (4) with respect to t; 
ixt + uttC + utG = 0                   (7) 

Rearranging equation (7), we have 
ixt = −Cutt − Gut               (8) 

We take the partial derivative of equation (6) with respect to x 
uxx + Rix + Lixt = 0                  (9) 

Substitute equation (4) and (8) into equation (9) 
uxx + R[−Cut − Gu] + L[−Cutt − Gut] = 0               (10) 

Divide equation (10) by LC 
1
LC

uxx = utt + �R
L

+ G
C
�ut + GR

LC
u       (11) 

Renaming some constants, we get the telegraph equation 
utt + (α + β)ut + αβu = c2uxx                                                               (12) 

where c2 = 1
LC

,α = G
C

,β = R
L

          

3. METHOD OF SOLUTION 
In providing solutions to two examples of telegraph equation. We solve these two examples using the 
Adomian Decomposition method and then we also apply the Laplace Adomian Decomposition Method 
(LADM) and then compare the results obtained in the two mathematical analytical methods. 
Example 1 (Using Adomian Decomposition Method) 
Solve the following homogeneous telegraph equation; 

uxx = utt + ut − u         (13) 
Subject to the conditions; 

u(0, t) = e−2t, ux(0, t) = e−2x 
u(x, 0) = ex, ut(x, 0) = −2ex     (14) 

Solution 
Operation with Lx−1 on (13) and using the boundary conditions yields 

u(x, t) = e−2t + xe−2t + Lx−1(utt + ut − u)                (15) 
This gives; 

∑ un(x, t) =∞
n=0 e−2t + xe−2t + Lx−1((∑ un∞

n=0 )tt + (∑ un∞
n=0 )t − ∑ un∞

n=0 )  (16) 
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The decomposition method suggests the relation; 
u0(x, t) = e−2t + xe−2t 

. 

. 

. 
uk+1(x, t) = Lx−1(uktt + ukt − uk),      K ≥ 0    (17) 

When the components of the solution u(x,t) given by 
u0(x, t) = e−2t + xe−2t 

u1(x, t) = Lx−1(u0tt + u0t − u0) 

=
1
2!

x2e−2t +
1
3!

x3e−2t 
u2(x, t) = Lx−1(u1tt + u1t − u1) 

=
1
4!

x4e−2t +
1
5!

x5e−2t 
u3(x, t) = Lx−1(u2tt + u2t − u2) 

= 1
6!

x6e−2t + 1
7!

x7e−2t              (18) 

Combining the solutions, we have; 

u(x, t) = e−2t �1 + x +
1
2!

x2 +
1
3!

x3 +
1
4!

x4 +
1
5!

x5 + ⋯�, 
Which gives the exact solution in the form 

u(x, t) = ex−2t       (19) 
Example 2 (Adomian Decomposition Method) 
Solve the following homogeneous telegraph equation 

uxx = utt + 4ut + 4u            (20) 
Subject to the conditions 

u(0, t) = 1 + e−2t, ux(0, t) = 2 
u(x, 0) = 1 + e2x, ut(x, 0) = −2        (21) 

Solution 
Operate with Lx−1 on (20) and using the boundary condition gives 

u(x, t) = 1 + e−2t + 2x + Lx−1(utt + 4ut + 4u)    (22) 
This gives; 

∑ un(x, t)∞
n=0 = 1 + e−2t + 2x + Lx−1((∑ un∞

n=0 )tt + 4(∑ un∞
n=0 )t + 4∑ un∞

n=0 )`  (23) 
The recursive relation is given by  

u0(x, t) = 1 + e−2t + 2x 
. 
. 
. 

uk+1(x, t) = Lx−1(uktt + 4ukt + 4uk), K ≥ 0    (24) 
In view of (24) we obtain 

u0(x, t) = 1 + e−2t + 2x 
u1(x, t) = Lx−1(u0tt + 4u0t + 4u0) 

= 2x2 +
4
3

x3 

u2(x, t) = Lx−1(u1tt + 4u1t + 4u1) 
2
3

x4 + 4
15

x5      (25) 

Other components can be computed in a similar manner. Consequently, the solution in a series form is 
given by 

u(x, t) = e−2t + �1 + 2x + 1
2!

(2x)2 + 1
3!

(2x)3 + ⋯�     (26) 

So the exact solution 
u(x, t) = e2x + e−2t         (27) 

Example 1 (Using Laplace Adomian Decomposition Method) 
Solve the following homogeneous telegraph equation 

uxx = utt + ut − u 
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Subject to the conditions  
u(0, t) = e−2t, ux(0, t) = e−2x 

u(x, 0) = ex, ut(x, 0) = −2ex    
Solution 
Applying Laplace Transform as follows; 

L{uxx} = L{utt} + L{ut} − L{u} 
s2L{u} = L{utt} + L{ut} − L{u}       (28) 

Substituting the boundary conditions (14) into (28), we have 
s2L{u} − su(0, t) − ux(0, t) 

= L{utt} + L{ut} − L{u} 
s2L{u} − s{e−2t} − {e−2t}                (29) 
= L{utt} + L{ut} − L{u} 

Divide equation (29) by s2 

L{u} =
1
s

{e−2t} −
1
s2

{e−2t} 

= 1
s2

L{utt} + 1
s2

L{ut} −
1
s2

L{u}      (30) 

Rearranging equation (30), we have; 

L{u} = 1
s

{e−2t} + 1
s2

{e−2t} + 1
s2

L{utt} + 1
s2

L{ut}−
1
s2

L{u}          (31) 

Now, using the decomposition representation for the dependent variables; 
u(x, t) = ∑ un(x, t)∞

n=0             (32) 

L{u0} = 1
s

{e−2t} + 1
s2

{e−2t}              (33) 

Take the Inverse Laplace Transform of both sides of equation (33) 
u0 = e−2t + xe−2t     (34) 

Hence, 

L{u1} = 1
s2

L{u0tt} + 1
s2

L{u0t} −
1
s2

L{u0}        (35) 

Taking the inverse Laplace Transform on both sides of equation (35) 

u1 = 1
2!

x2e−2t + 1
3!

x3e−2t         (36) 

L{u2} = 1
s2

L{u1tt} + 1
s2

L{u1t} −
1
s2

L{u1}        (37) 

Taking the inverse Laplace Transform on both sides of equation (37) 

u2 = 1
4!

x4e−2t + 1
5!

x5e−2t              (38) 

L{u3} = 1
s2

L{u2tt} + 1
s2

L{u2t}−
1
s2

L{u2}         (39) 

u3 = 1
6!

x6e−2t + 1
7!

x7e−2t           (40) 

And so on; 
In general; 

L{uk+1} =
1
s2

L{uktt} +
1
s2

L{ukt} −
1
s2

L{uk} 

Combining the results obtained in equations (34), (36), (38) and (40), we get; 
u(x, t) = u0 + u1 + u2 + u3 + ⋯ 

u(x, t) = e−2t �1 + x +
1
2!

x2 +
1
3!

x3 +
1
4!

x4 +
1
5!

x5 + ⋯� 

Which gives the exact solution in the form u(x, t) = ex−2t as obtained in equation (19) 
Example 2 (Laplace Adomian Decomposition Method) 
Solve the following homogeneous telegraph equation 

uxx = utt + 4ut + 4u 
Subject to the conditions 

u(0, t) = 1 + e−2t, ux(0, t) = 2 
u(x, 0) = 1 + e2x, ut(x, 0) = −2       
Solution 
Applying Laplace Transform as follows 

L{uxx} = L{utt} + L{4ut} + L{4u} 
s2L{u} = L{utt} + L{4ut} + L{4u}          (41) 
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Substituting the boundary condition (21) into (41), we have 
s2L{u} − su(0, t) − ux(0, t) = L{utt} + L{4ut} + L{4u} 
s2L{u} − s{1 + e−2t} − 2 = L{utt} + L{4ut} + L{4u}           (42) 

Divide equation (42) by s2 

L{u} − 1
s

L{1 + e−2t} + 1
s2

L{2} = 1
s2

L{utt} + 1
s2

L{4ut} + 1
s2

{4u}     (43) 

Rearranging equation (43), we have  

L{u} = 1
s

{1 + e−2t} + 1
s2

{2} + 1
s2

L{utt} + 1
s2

{4ut} + 1
s2

{4u}               (44) 

Now, using the decomposition representation for dependent variable u; 
u(x, t) = ∑ un∞

n=0 (x, t)      (45) 

L{u0} = 1
s

{1 + e−2t} + 1
s2

{2}        (46) 

Take the Inverse Laplace Transform of both sides of equation 
u0 = 1 + e−2t + 2x                 (47) 

Hence,  

L{u1} = 1
s2

L{u0tt} + 1
s2

L{4u0t} + 1
s2

L{4u0}    (48) 

Tking the inverse laplace transform on both sides of the equation  

u1 = 2x2 + 4
3

x3           (49) 

{Lu2} = 1
s2

L{u1tt} + 1
s2

L{4u1t} + 1
s2

L{4u1}    (50) 

u2 = 2
3

x4 + 4
15

x5             (51) 

And so on 
In general; 

L{uk+1} =
1
s2

L{uktt} +
1
s2

L{4ukt} −
1
s2

L{4uk} 

Combining the results obtained in equations (47), (49) and (51), we get 
u(x, t) = u0 + u1 + u2 + ⋯ 

u(x, t) = e−2t �1 + 2x + 1
2!

(2x)2 + 1
3!

(2x)3 + ⋯�       (52) 

Which gives the exact solution in the form u(x, t) = e2x + e−2t as obtained in equation (27). 
4. RESULTS AND DISCUSSION 
The telegraph equation is the focus of this work. The work focuses on two analytical methods for solving 
the telegraph equation. It was observed that the two analytical methods are valid and consistent as the 
solution obtained from the two analytical methods (Adomian Decomposition Method (ADM) and Laplace 
Adomian Decomposition Method (LADM)) provided the same result. The methods are accurate and 
requires less economization of terms. It therefore shows that the two methods converges rapidly and can 
be used interchangeably. The two methods can be used to solve other nonlinear partial differential 
equations as the results obtained using telegraph equations can be applied in such cases. 
5. CONCLUSION 
The telegraph equation is one of the many nonlinear partial differential equations. Like any other nonlinear 
partial differential equations, it involves variables and their partial derivatives. However, in this study, we 
try to compare two analytical methods to solve the telegraph equation. The two methods were valid and 
consistent and can be applied to solve other nonlinear partial differential equations. Two examples were 
analyzed and we used Adomian Decomposition Method (ADM) for the first two and then used Laplace 
Adomian Decomposition Method (LADM) for the same two examples. The results obtained demonstrate 
a great relationship as the results are the same. This two analytical methods can be used to solve other 
nonlinear partial differential equation because of the consistencies in the results obtained above. It is 
suggested that the two methods can be used in solving more practical problems ranging from quantum 
physics, fluid mechanics and even environmental studies. 
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