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Abstract: The mixture of Laplace transform and Homotopy perturbation was used to solve Benjamin-Bona-Mahony problems. In this research work, three 
examples of Benjamin-Bona-Mahony equations were considered. The numerical solutions were obtained by Laplace Homotopy Perturbation method. The 
method was introduced as essential tool to linearize all the associated nonlinear terms in the equations since Laplace transform method alone cannot handle 
nonlinear terms. The solutions are series form which quickly converges precisely to their exact value with few iterations. The solution obtained by Laplace 
Homotopy perturbation method accord well with solutions obtained by using other existing methods. The method of Laplace Homotopy perturbation is very 
powerful integral transform methods in solving some nonlinear Equations like Benjamin-Bona-Mahony equations. 
Keywords: Benjamin-Bona-Mahony equations, Laplace Transform, Laplace Homotopy Perturbation method, Waves 
 

1. INTRODUCTION 
Nonlinear differential equations played an important role in engineering and sciences. Since most nonlinear 
problems lack an exact solution, several numerical techniques have been devised to address the issue of 
nonlinearities. A well-known class of nonlinear partial differential equation which is Benjamin-Bona Mahony 
(BBM) equation. It may be expressed as [8]  

ut(y, t) =  uyyt(y, t) − u(y, t)uy(y, t) − uy(y, t),   u(y, 0) = g(y)        (1) 
where uuy and uyyt are the Dissipative term. 
A class of nonlinear partial differential equation which Benjamin-Bona Mahony (BBM) equation which, over 
time, has undergone extensive research. This equation, was proposed in 1972 to represent the long waves 
propagating undirectionally in shallow water by Jack Benjamin, Tom Bona, and John Mahony. The equation 
arises during investigation of water waves and is commonly used to model shallow water wave 
propagation [2]. The modulation of traveling waves is described by a two-dimensional dispersive wave 
equation in fluids. In an earlier period, precisely 1966, Peregrine proposed the following equation in his 
research. 
The concept of undular bores is specified in [10], while a more comprehensive n-dimensional rendition of 
this concept is presented in [14]. Several non-linear evolution equations are significant in the analysis of 
certain occurrences involving within plasmas, ion acoustic waves exist. Individual structures in dusty 
plasmas that are affected by magnetic fields are referred to as dust acoustic solitary structures. 
Electromagnetic radiation present in films of specific sizes is a quantized phenomenon [4]. Various 
methods were developed to provide solution to the traveling wave problems.  Several techniques include: 
lie group method, inverse scattering technique, Backlund transformation, homogeneous balance 
technique, Natural Transformation, factorization techniques, Laplace Transform Adomian decomposition 
techniques, the Pseudo-spectral techniquess, exp-function method, Riccati equation expansion method 
[12], [6], [9], [15],  [3], [5]. 
This BBM equation has been broadly studied due to its extremely interesting dynamical behavior, which 
include the formation of solitary waves and the phenomenon of solutions that explode up. The equation 
for Benjamin-Bona Mahony (BBM), which is majorly called regularized long-wave equation, which is very 
important for understanding shallow waves as well as drift, wave in plasma, and Rossby waves in fluid 
rotation.  As an example,[12]. It is an upgrade version of the KDV equation, specially outlined for 
propagating long, moderately amplitude gravity waves that propagate unidirectionally in 1+1 dimensions. 
It was illustrated that result of the Benjamin-Bona Mahony (BBM) equations are uniquely stable. Korteweg 
de Vries equation has a limitless line integrals of motion, while the equation of Benjamin-Bona Mahony 
(BBM) is limited to tripple integrals [7]. 
The equation of Benjamin-Bona Mahony was initially proposed by Peregrine when when studying undular 
bores in 1966 [10]. An n-dimensional version was given in a generalized form [14]. Several equations of 
nonlinear evolution make significant contributions in the investigation of some occurrences as well as dust 
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acoustic isolated characteristics in magnetized dusty plasmas, ion acoustic waves, and quantized sized 
films of electromagnetic waves are all examples of plasmas. [4]. The Riccati equation expansion, the lie 
group method, the inverse scattering technique, the Natural transform, the homogeneous balance 
technique, the Bäcklund transformation, the Laplace Adomian decomposition technique, the 
pseudospectral approach, and the lie group technique were some of the techniques proposed to solve 
these nonlinear evolution equations with traveling wave solutions ([12], [6], [9], [15], [5], [3]). The 
aforementioned techniques obtained several forms of nonlinear differential equation solutions. 
Several physical domains are familiar with Benjamin-Bona Mahony (BBM) equations [2]. It provides a 
framework for understanding the performance of long waves by taking the cognizance of both nonlinear 
and dissipative effects. Acoustic waves in harmonic crystals, Magnetohydrodynamic (MHD) waves in cold 
plasma, sound-gravity waves in compressible fluids and long wavelength, ripple waves in liquids are a few 
examples of surface waves, all included the use of this equation [7]. The BBM equation's dynamics have 
attracted significant attention from mathematicians [12]. The Korteweg de Vries equation’s regular form 
that was created especially for examining waves in shallow water.   
The equation has technological significant benefits compared with the Korteweg de Vries based on the 
existence and stability properties in several theoretical studies where long waves is being modelled from 
BBM. The equation gives a model of transmitted waves in one dimension under specified conditions and 
may be employed to study shallow gravity water waves, Rossby waves in spinning fluids. By considering 
the associated transformed equations' dispersion relation, it is easiest to identify the most significant 
difference among the KdV and BBM models. It is clear that these interactions produce radically different 
reactions to short waves and are only comparable for relatively tiny wave numbers. This is the primary 
factor why theory of the Benjamin-Bona Mahony equation, which forgot to put into consideration the 
dissipation and non-integrability, [2], [12].  
The equation of Korteweg de Vries model was employed to show extended, low-amplitude nonlinear 
waves on the surface of a perfect, inviscid fluid. [11] . It is an integrable equation, which its solution can be 
obtained using the inverse scattering transform. Solitons, which are localized waves with either infinite 
support or exponential decay, present in the KdV equation because of the delicate balance that weak 
nonlinearity and dispersion effects maintain. The solutions to the equation of Benjamin-Bona Mahony and 
the equation of Korteweg de Vries have drawn a lot of interest. Scientist such as Zabusky and Kruskal have 
examined the interplay between solitary waves with the recurrence of starting states. [1]. “Soliton” was 
used to describe the fragmental characteristics exhibited by water waves during interactions. 
The interaction of two solitons has played a major part in demonstrating the preservation of their shapes, 
velocity, and the constant pulse-like nature of water waves (Friedman, Partial Differential equations, 1969). 
To acknowledge the importance of this occurrence using Laplace Homotopy Perturbation Method (LHPM) 
we investigate the BBM equations analytically. Through this method, Bona-Mahony (BBM) solution is 
obtained in infinite forms, which approximates to its exact. This allows us to achieve a valuable insight into 
the characteristics and features of solitons in the context of BBM equations. 
2. BASIC PROPERTIES 
Here, the basic definitions and properties were given which will be used in this paper. 
Definition 2.1 [8]: If R(t) is a real-valued function that is continuously specified for all t, 0 < t < ∞ then the 
Laplace transform of Q(t) is written as: 

L[Q(t)] = Q(s) =  ∫ e−stQ(t)dt∞
0          (2) 

in which s is a transform parameter, S > 0 and L is the Laplace operator from Q(t) into Q(s). 
Theorem 2.2: Let a1 and a2 be constants where Q1(t) and Q2(t)are the Laplace transform of q1(s)and 
q2(s)respectively the 

L{a1Q1(t)  +  a2Q2(t)}  =  a1L{Q(t)}  +  a2L{Q2(t)} 
L{a1Q1(t)  +  a2Q2(t)}  =  a1q1(s) +  a2q2(s)      (3) 

Theorem 2.3 (Inverse property): Let a1 and a2 be constants where q1(s) and q(s)are the Laplace 
transformation of Q1(t)and Q2(t)respectively then 

L−1{a1q1(s)  + a2q2(s)}  =  a1L−1{q(s)}  +  a2L−1{q2(s)} 
L−1{a1q1(s)  +  a2q2(s)}  =  a1Q1(t)  + a2Q2(t)         (4) 

3. METHOD OF SOLUTION 
Considering the Benjamin-Bona-Mahony problem (BBM) of the form [8]: 
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ut(y, t) =  uyyt(y, t) − u(y, t)uy(y, t) − uy(y, t)    (5) 
Subject to initial condition 

u(y, 0) = g(y)      (6) 
Taking the Laplace Transform of equation (5) 

L{ut(y, t)} = L�uyyt(y, t)� − u(y, t)uy(y, t) − uy(y, t)}        (7) 
Using the linearity and differential property of Laplace Transform 

su(y, s) − u(y, 0) = L�uyyt(y, t)� − u(y, t)uy(y, t) − uy(y, t)}               (8) 
su(y, s) = u(y, 0) + L�uyyt(y, t)� − u(y, t)uy(y, t) − uy(y, t)}               (9) 

Substituting the initial condition in equation (6) into equation (9) yields 
su(y, s) = g(y) + L�uyyt(y, t)� − u(y, t)uy(y, t) − uy(y, t)}           (10) 

u(y, s) = g(y)
s

+ 1
s

L�uyyt(y, t)� − u(y, t)uy(y, t) − uy(y, t)}           (11) 

Taking inverse Laplace Transform of equation (11) leads to 

u(y, t) = g(y)
s

+ L−1 �1
s

L�uyyt(y, t)� − u(y, t)uy(y, t) − uy(y, t)�               (12) 

Taking the solution of equation (5) to be of the form 
u = u0 + ρu1 + ρ2u2 + ρ3u3 + ⋯    (13) 

To consider the nonlinear operator u(y, t)uy(y, t), here, the Homotopy perturbation approach is used 
u(y, t) = ∑ ρn∞

n=0 un(y, t)           (14) 
Substituting equation (14) into equation (12) to obtain 

∑ ρn∞
n=0 un(y, t) = g(y,t)

s
+ L−1{1

s
L �∑ ρnunyyt(y, t)∞

n=0 − �∑ ρnun∞
n=0 (y, t)��∑ ρnuny(y, t)∞

n=0 � −

∑ ρnuny(y, t)∞
n=0 �         (15) 

When we compare the coefficients of the corresponding powers of ρ, we get 

ρ0:   u0(y, t) =
g
s

(un, t) 

ρ1:   u1(y, t) = L−1 �
1
s

L�u0yyt(y, t) − u0u0y − u0y� � 

ρ2:   u2(y, t) = L−1 �
1
s

L�u1yyt(y, t) − u1u1y − u1y� � 
... 

ρn:   un(y, t) = L−1 �
1
s

L�un−1yyt(y, t) − un−1u(n−1)y − u(n−1)y� � 
The solution can be expressed as 

u(y, t) = u0(y, t) + u1(y, t) + u2(y, t) + ⋯ 
4. NUMERICAL EXAMPLES 
 Example 1 
Considering the Benjamin-Bona-Mahony problem of the form [8]:  

ut + uy + uuy − uyyt = 0     (16) 
With initial conditions given by 

u(y, 0) = ey       (17) 
Equations (16) can be written as 

ut = −uy − uuy + uyyt      (18) 
Taking Laplace Transform of equation (18) 

L{ut} = L�−uy − uuy + uyyt�             (19) 
su(y, s) − u(y, 0) = L�−uy − uuy + uyyt�    (20) 

Substituting the given initial condition 
su(y, s) = ey + L�−uy − uuy + uyyt�               (21) 

Taking the Laplace Inverse of equation (21) leads to 

u(y, t) = L−1 �e
y

s
� + L−1 �1

s
L�−uy − uuy + uyyt��          (22) 

u(y, t) = ey + L−1 �1
s

L�−uy − uuy + uyyt��    (23) 

The homotopy perturbation method can be written as 
u(y, t) = ∑ ρnun∞

n=0 (y, t)     (24) 
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Substituting equation (24) into (23) 

∑ ρnun∞
n=0 (y, t) = ey + L−1 �L

s
�−∑ ρnun∞

n=0 (y, t) − ∑ ρnun∞
n=0 (y, t)uny(y, t) + ∑ ρnunyyt∞

n=0 (y, t)�� (25) 

Equating coefficients of the corresponding powers of ρ yield 
ρ0:   u0(y, t) = ey 

ρ1:   u1(y, t) = L−1 �
L
s �
−u0y − u0u0y + u0yyt�� 

= L−1 �L
s

{−ey − eyey + 0}� = L−1 �L
s

{−ey − e2y}� = L−1 �− ey

s2
− e2y

s2
� = −ey(ey + 1)t 

ρ2:   u2(y, t) = L−1 �
L
s �
−u1y − u1u0y − u0u1y + u1yyt�� 

u2(y, t) = L−1 �
L
s �

u1yyt − u1u0y − u0u1y − u1y�� 

= L−1 �
L
s

{−4e2y − ey − (−te2y − tey)ey − ey(−2te2y − tey) − (−2te2y − tey)}� 

u2(y, t) = L−1 �
−ey(4ey + 1)

s2
+

3e3y + 4e2y + ey

s3 � 

= −ey(4ey + 1) +
t2

2!
(3e3y + 4e2y + ey) 

Other terms of u(y, t) can be completed by following the same procedure. 
Thus, the solution u(y, t) is expressed in the form 

u(y, t) = u0(y, t) + u1(y, t) + u2(y, t) + ⋯ 

u(y, t) = ey − ey(4ey + 1)t − ey(4ey + 1)t + t2

2!
(3e3y + 4e2y + ey)      (26) 

The equation (26) which is the solution of equation (16) agrees with the solution obtained in [8]   
 Example 2 
Considering the Benjamin-Bona-Mahony problem of the form [2] 

ut(y, t) =  uyyt(y, t) − uuy(y, t) − uy(y, t)            (27) 
With initial condition given by 

u(y, 0) = sech2 �y
4
�           (28) 

Taking the Laplace Transform of equation (27) 
L{ut(y, t)} = L�uyyt(y, t) − uuy(y, t) − uy(y, t)�   (29) 

Applying the differential property of the Laplace Transform 
su(y, s) − u(y, 0) = L�uyyt(y, t) − uuy(y, t) − uy(y, t)�         (30) 

Substituting the initial condition in equation (28) in equation (30) 

su(y, s) − sech2 �y
4
� = L�uyyt − uuy − uy�    (31) 

u(y, s) = 1
s

sech2 y
4

+ 1
s

L�uyyt − uuy − uy�                 (32) 

Taking the Laplace Inverse of equation (32) we obtain 

u(y, t) = L−1 �1
s

sech2 y
4
� + L−1 �1

s
L�uyyt − uuy − uy��           (33) 

u(y, t) = sech2 y
4

+ L−1 �1
s

L�uyyt − uuy − uy��    (34) 

Applying the homotopy perturbation method to take care of the nonlinearities in equation (34) 
Recall in equation (14) that 

u(x, t) = �ρnun

∞

n=0

(y, t) 

Substituting equation (14) into (34) 

∑ ρnun∞
n=0 (y, t) = sech2 y

4
+ L−1 �L

s
�∑ ρnunyyt∞

n=0 (y, t) − ∑ ρnuny∞
n=0 (y, t) −∑ ρnuny∞

n=0 (y, t)�� (35) 

Equating coefficients of the corresponding powers of ρ 

ρ0   ∶    u0(x, t) = sech2
y
4
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ρ1   ∶    u1(y, t) = L−1 �
L
s �

u0yyt − u0u0y + u0y�� 

u1(y, t) = [
1
2

sech4 �
y
4
� tanh �

y
4
� +

1
2

sech2 �
y
4
� tanh �

y
4
� 

ρ2   ∶    u2(y, t) = L−1 �
L
s

[u1yyt]− �u1u0y + u0u1y� − �u0y�� 

=
1

256
+ sech8 �−104t + 23tcosh �

y
2
��+ [

1
256

+ sech8(16 + coshy + tcosh �
3y
2
�

+ �
1

256
+ sech8 �−107sinh

y
2

+ 8sinhy + sinh
3y
2
�� 

Thus, the result u(y, t) is expressed in the form 
u(y, t) = u0(y, t) + u1(y, t) + u2(y, t) + ⋯    (36) 

u(y, t) = sech2 �
y
4
� + �

1
2

sech8 �
y
4
� tanh �

y
4
� +

1
2

sech2 �
y
4
� tanh �

y
4
�� t 

+ �
1

256
+ sech8 �−104t + 23tcosh �

y
2
��� + �

1
256

+ sech8 �16tcosh(y) + tcosh �
3y
2
��� 

+ � 1
256

+ sech8 �−107sinh �y
2
� + 8sinh + sinh �3y

2
���                             (37) 

Equation (37) also has a closed form that reads as 

u(y, t) = sech2 �y
4
− t

3
�      (38) 

The equation (38) which is the solution of equation (27) agrees with the solution obtained in [2]. 
 Example 3 
Consider the Benjamin-Bona-Mahony problem of the form [8]  

ut(y, t) =  uyyt(y, t) − uuy(y, t) − ux(y, t)    (39) 
Subject to initial condition given by 

u(x, 0) = y2          (40) 
Taking the Laplace Transform of equation (39) 

L{ut} = L�uyyt − uuy − uy�          (41) 
su(y, s) − u(y, 0) = L�uyyt − uuy − uy�    (42) 

Substituting the given initial condition 
su(y, s) = y2 + L�uyyt − uuy − uy�             (43) 

u(y, s) = y2

s
+ 1

s
L�uyyt − uuy − uy�            (44) 

Taking the Inverse Laplace Transform of equation (42) leads to 

u(y, t) = L + �y
2

3
�+ L−1 �1

s
L�uyyt − uuy − uy��          (45) 

u(y, t) = y2 + L−1 �1
s

L�uyyt − uuy − uy��    (46) 

Recall in equation (14) that the homotopy perturbation method can be written as 

u(y, t) = �ρnun

∞

n=0

(y, t) 

Substituting equation (4) into equation (46) yields 

∑ ρnun∞
n=0 (y, t) = y2 + L−1 �1

s
�∑ ρnunyyt∞

n=0 (y, t) − ∑ ρnun(y, t)∞
n=0 uny(y, t) − ∑ ρnuny(y, t)∞

n=0 �� (47) 

Equating coefficients of the corresponding powers of ρ, yields 
ρ0   ∶    u0(y, t) = y2 

ρ1   ∶    u1(y, t) = L−1 �
L
s ��

u0yyt� − �u0u0y� − �u0y��� 

 u1(y, t) = L−1 �
L
s

{[0] − (y2)(2y)− 2y}� 

= L−1 �L
s

{−2y3 − 2y}� = L−1 �L
s
�−2y

3−2y
s

�� = L−1 �−2y
3−2y
s

� = −2y(y2 + 1)t 
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ρ2   ∶    u2(y, t) = L−1 �
L
s ��

u1yyt� − �u1u0y + u0u1y� − �u1y��� 

 u2(y, t) = L−1 �
L
s

{[−12y] − [(−2y3t − 2yt)(2y)] + [y2(−6y2t − 2t)] − [−6y2t − 2t] }� 

= L−1 �
L
s
�
−12y

s
+

4y4

s2
+

4y2

s2
+

4y2

s2
+

6y4

s2
+

2y2

s2
+

6y2

s2
+

2
s2
�� 

= L−1 �
12y
s2

+
10y4 + 12y2 + 2

s3 � 

 u2(y, t) = 12yt + (5y4 + 6y2 + 1)t2 
Other terns can be obtained by following the same procedure 
Thus, the result u(y, t) can be expressed as 

u(y, t) = u0(y, t) + u1(y, t) + u2(y, t) + ⋯ 
u(x, t) = y2 − 2y3(y2 + 1)t − 12yt + (5y4 + 6y2 + 1)t2          (48) 

= y2 − (2y3 + 14y)t + (5y4 + 6y2 + 1)t2                 (49) 
The equation (49) which is the solution of equation (39) agrees perfectly with the solution obtained in [8]. 
4.  CONCLUSION 
Here, LHPM has been used to obtain the approximate results for the Benjamin-Bona-Mahony problems. 
This method’s main benefit is that it provides an analytical approximate solution in series of sequence which 
converges rapidly. The results obtained show that Laplace Homotopy Perturbation Method demonstrates 
its reliability and signifies a significant improvement in tackling nonlinear partial differential equations over 
other established techniques. 
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