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Abstract: A theoretical exploration is presented for the obtaining a transfer matrix and using this technique with stiffness matrix for obtaining a solution for dispersion 
curves in heat conducting n–layered isotropic in the context of generalized theory of thermoelasticity This paper discusses transfer matrix technique and obtained stiffness 
matrix for heat conducting isotropic layered in generalized thermoelasticity with thermal relaxation. Some special cases have also been deduced and discussed from 
the obtained result. 
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1. INTRODUCTION 
Composite materials are employed in numerous structural components as such materials are perfect for 
structural applications, comprising motorized parts, infrastructures, science, aerospace and engineering 
structures. Laminated plate structures are also the most significant applied structure. Composite materials 
are employed in numerous structural components, comprising motorized parts, infrastructures, science, 
aerospace and engineering structures.  
Studies of the elastic waves in multilayered and laminated media are well documented in many references 
[1–2]. Transfer matrix technique [3–5] is a reliable technique for wave propagation analysis in layered 
media. Liu et al. [6] studied the wave propagation in arbitrary anisotropic laminates on the basis of an exact 
theory. Nayfeh [7] covered the detailed investigation of wave propagation in layered anisotropic media 
and covered transfer matrix techniques. Transfer and stiffness matrices are well documented in [8–12] 
where a mathematical formulation of transfer matrix technique is discussed and the instability of transfer 
matrix techniques by using stiffness matrix techniques elimination is also studied.  
Lord and Shulman [13] extended the coupled theory of thermoelasticity by introducing the thermal 
relaxation time in the constitutive equations. This theory, which eliminates the paradox of infinite velocity 
of heat propagation, is called generalized theory of thermoelasticity. Thermoelasticity with second sound 
and hyperbolic thermoelasticity is well documented and reviewed by Chandrasekharaiah [14–15]. 
Propagation of waves in layered anisotropic media and laminated composites in generalized 
thermoelasticity is studied in detail by Verma [16 ,17].  
The modified theory of thermoelasticity report a finite nature of disturbance propagation is familiarized by 
introducing thermal relaxation time constants into the heat conduction equation. This theory of 
thermoelasticity is named generalized theory of thermoelasticity, which also take into account of the 
coupling of temperature and strain fields.  
In this paper in generalized theory of thermoelasticity a theoretical exploration is presented for the 
obtaining a transfer matrix and using this technique with stiffness matrix for obtaining a solution for 
dispersion curves in heat conducting n–layered isotropic media. Stiffness matrix is also obtained and 
discussed from transfer matrix technique for heat conducting isotropic layered with thermal relaxation. 
2. FORMULATION  
Consider a heat conducting layered plate consisting of homogeneous n–layers rigidly bonded at their 
interfaces. The problem is to obtain a transfer matrix and then combing it with stiffness matrix for obtaining 
a solution for dispersion curves. Using two–dimensional coordinate systems (x, z) which have its origin at 
the bottom layer of the plate such that x denotes the propagation direction and z is the normal to the 
interfaces. Hence layered plane will then occupy the space 0 ≤  z  ≤  h where h denotes the total thickness 
of the plate. Since the plate is made of n layers, kth layer will then have its local coordinates kx  and kz  with 

local origin at bottom surface. Hence each layer occupy the space 0 k kz h≤ ≤  where kh is its thickness. 

With this choice of co–ordinate system the equation of motion and heat conduction for each layer are: 
µ λ µ ρ γ[ ) ( )( ) , , , , , ,u u u w u Txx zz xx xz x+ + + + = + , 

                          µ λ µ ρ γ( ) ( )( ) , , , , ,w w u w w Txx zz xx zz z+ + + + = +   ,                                                (1) 
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K T T C T T T u w u wxx zz e x z x z[ ] (  ) [(   ( , ), , , , ,+ + + = + + +ρ τ γ τ0 0 0 . 

The comma notation is used for spatial derivatives and the superposed dot denotes time differentiation. 
Symbols λ  and µ  are Lame’s constants, ρ is the density, τ 0  is the thermal relaxation time, tα  the 

coefficient of thermal expansion ( )3 2 tγ λ µ α= +   is the themoelastic coupling constant and all other 

symbols have their usual meanings as in [3].  
3. ANALYSIS 
For waves whose projected wave vector is along the x–axis, equations (1) admit the formal solutions 

       1 2 3( , , ) ( , , ) exp[ ( )]u w T U U U i x z ctξ α= + −                                               (2) 

whereξ  is the wave number, 1 2,U U and 3U  are  the constant amplitudes related to displacements and 

temperature, c  is the phase velocity ( )ω ξ= , ω  is the circular frequency, α  is the ratio of the z and x–

directions wave numbers. This choice of solutions to equations (1) leads to the coupled equations 
     M Umn n( )α = 0    m, n  = 1, 2, 3.                                                             (3) 

where the summation convention is implied, and 

M c11 2
2 21= + −α ζ ,  M c13 3= α , M14 1= , 31 13M M= , M c33 2

2 2= + −α ζ , M 34 = α , 

             M i c41
2

1= ∗ •ξ ω ζ τ ε , M i c43
2

1= ∗ •ξ ω ζ ατ ε , M 44
2 21= − +∗ω ζ τ α( ) , c c3 21= −         (4) 

ε
γ

ρ λ µ1
0

2

2
=

+
T

Ce ( )
, ω λ µ∗ = +C Ke ( )2 ,  τ τ δ ξ τ ξ• = + +( )( )0 1 1k i c i c , τ τ ξ= +( )0 i c , 

             c2 2= +µ λ µ( ) ,ζ ρ λ µ2 2 2= +c ( ) .                                                    (5) 

The existence of non–trivial solution for 1 2,U U and 3U  determinant in equations (3), vanishes and yields 

the polynomial equation 

                  ( )( )ζ α α α2
2

2
2

4 2 0− − + + =c c A B ,                                                    (6) 

where A i c= − + −∗ •2 1 1
2[( ) ]ω τ ξ τ ε ζ , B i c= − − +∗ •[( )( ) ]ζ ζ ω τ ξ ζ τ ε2 2 2

11 1 . 
Solving (6) for the six roots of α  and using superposition results in the following formal solution relating 
the displacements, temperature, thermal stresses and temperature gradient within a layer to its wave 
amplitudes. 
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here α α1
2

2
2,  are roots of α α4 2 0+ + =A B    and α 3

2
2

2 1= −
c
cT

, E eq
i zq= ξα

, E ei x ct= −ξ ( )
, q = 1,2 ...6.  

α α1
2

2
2, Corresponds to longitudinal and thermal waves whereas α 3

2   corresponds to transverse wave which 
is not affected by the temperature variations. Also 
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 The continuity of displacement, temperature ( ) { , , )D z u w T= and stresses and the temperature gradient 

components ( ) { , , )xz zz
TS z
z

σ σ ∂
=

∂
 at the interface  

( ) ( 1)
1( ) ( )n n

n nD h D h−
−= ;   ( ) ( 1)

1( ) ( )n n
n nS h S h−

−=                                                     (8) 
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4. TRANSFER MATRIX 
Specializing (7) to the upper and bottom surface of each layer, we can relate, after lengthy algebraic 
reductions and manipulations, the displacements, temperature, stresses and temperature gradient of the 
upper layer to those of  the bottom as 

( ) ( )
6 6

u b
j ij jP a P

×
 =    ,                                                                         (9) 

where jP  is a column vector consisting of , , , , ,zz xzu w T Tσ σ , and the superscripts (u) and (b) designate 

quantities defined at the upper and bottom of the jth layer respectively. By repeating the above process 
to each layer and invoking the continuity conditions on the upper and bottom of each layer to those of its 
neighbors we can finally relate the displacements, temperature, stresses and temperature gradient at the 
top (top of layer (n)) of the plate to those at the bottom of the plate (bottom of layer (1)) via the transfer 
matrix multiplications 

1 1......
n n

A A A A
−

=                                                                           (10) 

which leads to global transfer matrix 
( ) ( )u bP AP= ,                                                                                 (11) 

            
( ) ( )

( ) (1)

( ) (1)

( ) (1)

( ) (1) 6 6

( ) (1)

( ) (1)

,

0

n

n

n
u b

ijn
zz zz

n
xz xz

n

u u
w w
T T

P P A A

T Tz h z

σ σ
σ σ

×

   
   
   
   

 = = =     
   
   
   

′ ′      = =

                                            (12)      

where ( ) ( ),u bP P are the displacement , temperature, stresses and temperature gradient column vectors at 

the top   z h=  and bottom 0z =  and 
6 6ijA A
×

 =   of the total plate respectively. 

Using the matrix equation (11) to rewrite the transfer matrix which is relating the layer properties and 
boundary conditions at the top and bottom surfaces with other layers.  
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                                     (13) 

 In equation (13) matrix 6 6A ×  is written in terms of sub matrices , ,     SS SD SD DDA A A and A  are 3 ×3 matrices. 

For the kth layer  and 1
k k k kA X H X −=  is having diagonal matrix kH  with diagonal entices ( )3expl lE i xξα=   

whose determinant is equal to the product of its entries 
6

1
j

j

E
=
∏ . 

where ( )uP , z top=  and ( )bP z bottom=  are the displacement , temperature, stress  and temperature 
gradient column vectors at the top  and bottom of the total plate respectively. 
5. STIFFNESS AND COMPLIANCE MATRIX 
Equations (7) can be expressed in the matrix form as 
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                                                            (14) 

Specialize (14) and write only the displacement and temperature matrix on the upper and lower surfaces 
of the layer n can be represented in the matrix form 

       1
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                              (15) 

Similarly specialize (14) and write only the stresses and temperature gradient matrix on the upper and lower 
surfaces of the nth layer can be represented in the matrix form 

       1

( ) ( ) ( )
3 4 1 ( ) ( )

3 4 2

n

n

n n n
z h n n

D
z h

D Q Q U
M U

G G UD
−

=

=

     
= =     

     

                                                 (16) 

Equations (15 and (16) relate the stresses and displacements on the nth layer surfaces to the wave 

displacement amplitudes ( )nU .  
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Now substituting the amplitude vector ( )nU from Eq. (16) into (15) we obtain 

            ( )
1 1

( ) ( )
1( ) ( )n n

n n

n n
z h hn n

S D
z h h

S D
N M

S D
− −

−=

=

   
=   

      
                                                           (17) 

Similarly Now substituting the amplitude vector ( )nU from Eq. (15) into (16) we obtain 
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1( ) ( )n n

n n
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                                                          (18) 

Matrix in (17)  

          
( )

( )
1 11 12( ) ( ) ( )

21 22

n
n n n

T S D

S S
S N M

S S
−  

= =  
 

                                                          (19) 

is defined as a layer stiffness matrix. 
Matrix in (18)  

          
( )

( )
1 11 12( ) ( ) ( )

21 22

n
n n n

C D S

D D
D M N

D D
−  

= =  
                                                          

 (20) 

is defined as a layer compliance matrix. 
For stiffness matrix for bottom layer with the coordinate origin at the plate surface, only three waves ( )

1
nU  

propagate in the z−  direction from the surface to infinity. The displacements and stresses can be obtained 
from Eqs. (15) and (16) respectively: 

1

(1) (1) (1)
3 1hD Q A=  and

1

(1) (1) (1)
1 1hS Q A= .  

Therefore the stiffness matrix (1)M  for a bottom layer is given by 

           ( )
1

1(1) (1) (1) (1) (1) (1)
3 1 1T hS Q Q A M D

−
= =

                                  
                            (21) 

where (1)M  is the stiffness matrix. 
To obtain transfer matrix reorganize equations (14), representing the stresses, temperature gradient, 
displacements and temperature on the top and bottom surfaces of the nth layer as 
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From equations (22) and (23) eliminate 1
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Following [9] the relation between transfer matrix ( )nZ  and stiffness matrix ( )nM  is given by    

          

( ) ( )
( ) ( )

( )1 1
12 11 12( )

1 1
21 22 12 11 22 12

n

n S S S
P

S S S S S S

− −

− −

 −
 =
 −                                                            

 (24) 

Thus the layer transfer ( )nP and stiffness ( )nM matrices are formed from the same.  
The stiffness matrix can also be represented through the transfer matrix elements 

  

( ) ( )
( ) ( )

( )1 1
12 11 12( )

1 1
21 22 12 11 22 12

n

n P P P
S

P P P S P P

− −

− −

 −
 =
 −                               

                               (25) 

6. COUPLED THERMOELASTICITY 
This case corresponds to no thermal relaxation time, i.e. 0 0τ = . Following the above procedure as in the 

above case, we again arrived at equations similar to (24) and (25).  
The global transfer matrix is calculated by multiplying the transfer matrix of individual layers consecutively. 
And to satisfy thermally insulated and stress–free layered plate condition for the whole laminate equation 

(13) are set to zero i.e. ( ) { , , ) 0xz zz
TS z
z

σ σ ∂
= =

∂
, we obtain the characteristic equation as   

                                 [ ]det 0DSA =                                                                                  (26) 
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Equation (26) is solved to find dispersion phase velocities versus wavenumbers or frequencies. Results 
obtained are in agreement with the corresponding results obtained by [18,19]. 
7. CONCLUSION  
The paper fleetingly aimed at the mathematical formulation of transfer and stiffness matrices for a heat 
conducting multilayered media in generalized thermoelasticity with one relaxation time. Transfer matrix 
technique is one of the consistent procedures for wave propagation analysis in layered media as its 
advantage is that it condenses the multi–layered system into less numbers of equations, whereas SH waves 
decoupled and remaining equations relating the boundary conditions at the bottom and the last interfaces. 
Transfer matrix technique removes all other in–between interfaces, which reduces a lot of computational 
time and complexity. Hence, this technique is advantageous with a drawback that it may agonizes is its 
algebraic uncertainty of the result at large values of frequency and thickness products. Other various 
advantages of this technique are to solve characteristic equations for the free waves on single layered plate 
and on the periodic media. Transfer matrix technique can be used in solving various continuum mechanics 
forthcoming work. 
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