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Abstract: Uranium (U) is a trace radioactive element distributed within the surface and ground waters through various sources, including natural and human–
made activities. This study aimed to present a holistic review of uranium removal from groundwater. According to findings present study, in ground waters the 
highest concentration of uranium 27 to10,100 µg/L was found in USA, and the lowest concentration was3 to 8.6 µg /L found in India, while in surface waters the 
highest level of uranium 0.05 to 900 µg/L was found in Turkey, and the lowest concentration was 0.13 to 590 ng/L found in Japan, and the WHO and EPA guideline 
value of 30 μg/L. Various treatment techniques used for uranium removal, including adsorption, conventional coagulation, chemical precipitation, bioremediation, 
nanofiltration and reverse osmosis, and ion exchange, have been considered widely and established to propose acceptable findings. These methods can be used in 
future research to remove uranium (U (IV) and U(VI) ) from polluted waters in both experimental and real–world. 
Keywords: groundwater, radioactive, surface water, uranium removal 
 

1. INTRODUCTION 
Groundwater often includes mineral pollutants like fluoride, uranium, arsenic, and boron (Shen & 
Schäfer 2014). Longer–term exposure to these pollutants can cause health impacts in humans. For 
instance, ingestion of excess fluoride results in dental and skeletal fluorosis (Fawell et al. 2006; Fadaei & 
Amiri 2013), and permanent intake of uranium through potable water has toxic impacts on kidneys. 
Uranium is present in the Earth’s layer with a mean redundancy of 2.7 mg/kg, whilst granite and 
phosphorite rocks may contain elevated levels of up to 15 mg/kg and 120 mg/kg, respectively(Bowman 
1997).Uranium is released into the environment during medical and industrial activities and nuclear 
energy events, including nuclear power plants, nuclear weapons experiments, ore mining, and 
manufacturing, which may pollute aquatic sources, particularly groundwater (Cooper et al. 2021). 
Uranium contamination in groundwater is an issue of anxiety to various nations worldwide, e.g., India, 
Japan, USA, Norway, Canada, and Finland(Katsoyiannis & Zouboulis 2013; Atkins et al. 2016). Among the 
most frequent types of uranium in water sources are the anionic carbonate mixtures, such as UO2 
(CO3)2− 2 at pH levels less than 7 and the UO2 (CO3 )4− 3 at pH levels above 8. When pH levels are between 
5 and 6.5, the neutral UO2CO3 may also form a vital sector, which varies from 20% to 90% depending on 
the pH level (Tolkou et al. 2020). The effluent levels of uranium may reach 10 mg/L, which is above the 
present limit on uranium in the tolerable daily intake(Frisbie et al. 2013). The United States 
Environmental Protection Agency (EPA) has defined the maximum pollutant levels of 2 and 30 μg/L for 
thallium and uranium in potable water, respectively(Huang et al. 2021). The nature uranium 
concentration of seawater is around 3–9 mg/L(Hu et al. 2018). 
Environmental outcomes and health risks associated with uranium mills are shown by two main 
methods. One is surface soil/water pollution by abrasion and wind diffusion of radioactive matter and 
the other is air pollution by Rn release (Abdelouas et al. 2018). 
Natural uranium has both chemotoxicity and radiotoxicity. Water intake–based dose calculation 
revealed no significant radiological toxicity after exposure to natural uranium up to 1200 µg/L in 
groundwater (Hakonson–Hayes et al. 2002). Conversely, the uranium chemical toxicity causes a greater 
health problem as compared with its radiological toxicity. According to research studies, uranium is 
mainly stored in kidneys and bones, and long–time ingestion of uranium may raise the risk of renal 
deficiencies (Hakonson–Hayes et al. 2002). Expanding technologies and techniques for effective removal 
of uranium in a cost–effective manner seems to be essential.  
Many studies have been conducted on uranium removal methods, such as ion exchange, membrane 
based separation, reverse osmosis, nanofiltration, ultrafilteration, chemical precipitation, biological 
adsorption, adsorption, bioremediation, electrochemistry, photocatalytic process, and solvent 
extraction (Kuncham et al. 2017; Tripathi et al. 2018; Ataee et al. 2020; Fadaei 2022). Some research 
studies have mentioned the advantages and limitations of uranium purification (Kuncham et al. 2017; 
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Tripathi et al. 2018; Ataee et al. 2020). Each technique has its own advantages, disadvantages, and 
effective factors and works in an efficient way under best conditions. Therefore, choosing a proper 
effective technique to eliminate uranium from water sources is essential. This study aimed to present a 
holistic review of various methods of uranium removal from groundwater. 
2. METHODS 
This review has principally focused on methods and processes. Several papers on the topic were 
retrieved from databases, such as Google Scholar, Web of Science, and Science Direct. Keywords, such 
as “surface water”, “drinking water”, “ground water”, “water treatment” “uranium removal”, and 
“adsorption” were used to retrieve proper papers. After a thorough search and removing articles that 
were not directly related to uranium removal from water, a total of 125 original papers were identified 
eligible to be included within the review. The review articles providing a perception of various 
mechanisms of each treatment were excluded. Types of water, such as surface water, sea water, and 
groundwater, were investigated in this study. 
3. RESULTS AND DISCUSSION 
These articles used various methods, including adsorption (biosorbents, electrosorption nanoparticles 
(NPs)) (13), bioremediation and biological method (8), nano–filtration (2), nano–filtration and reverse 
osmosis (2), ultrafiltration (2) reverse osmosis (1), photocatalytic process (7) ion–exchange (2), 
coagulation (1),  and electrocoagulation(1) ( Tables 1,2,3,4,5,6). 
▓ Adsorption 

Adsorption is one of the most effective strategies to eliminate several toxic contaminants from aqueous 
environments due to its easy design, facilities, low price, high adsorption yield and wide 
compatibility(Ahmadi et al. 2020).Lemons et al. reported  a rate of about 80% for polonium and 90% for 
plutonium removal from drinking water using co–precipitation(Lemons et al. 2018). The results from this 
study showed that the highest removal performance of uranium was1549.32 mg/g for thiol–functional 
hydrotalcite, and the lowest removal performance was32.46 mg/g for carbon nanotubes (Figure 1 and 
Table 1).  

 
Figure 1.Removal performance of uranium by different adsorbents 

One study reported the optimal adsorption capacity for uranium(VI) to be 127.23 mg/g at pH 7.0 
following a 6h exposure(Wang et al. 2016). Another study found Al2O3 aerogels to be potential 
adsorbents for uranium removal (Ding et al. 2021). Mishra et al. reported the utmost sorption of around 
95% to occur at the pH span of 5 to 6 through the biochar process(Mishra et al. 2017). In a study, Yekta 
et al. reported the best capacity adsorption of 23.5849 mg of VI(U)/g of NiO/NPs/Ag–clinoptilolite(Yekta 
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et al. 2016). Another study found the efficiency of uranium removal using adsorption media, such as iron 
oxides and titanium oxide to be more than 90% (Katsoyiannis & Zouboulis 2013). 

Table. 1 Adsorption method for uranium elimination from various types of water 
Technique Environment Elimination performance Comment Ref 

Multi–shelled Fe3O4@MnOx hollow 
microspheres Groundwater 106.72 mg/g (90%) pseudo–second–order model, reaction time  60 

min,pH=2–11,298 K 
(Song et al. 

2019) 
Adsorption (Thiol–functional 

hydrotalcite) 
Aqueous 
solutions 1545.32 mg/ g(99.06%) (VI) 30 mg/L, time 150 min, pH= 3.0, temperature 

30 °C (Xu et al. 2019) 

Adsorption (Ceria nanocrystals) Aqueous 
medium 

Adsorption capacity of 270 
mg/g 

U(VI)0.5– 70 mg/L, pH=6, contact time 20 h, 
Langmuir and Freundlich adsorption model 

(Kuncham et al. 
2017) 

Adsorption(Synthesize Silica Zn2SiO4 
and Zinc silicate nanotubes ZnSNTs) 

Aqueous 
solutions 

Adsorption value 250 mg/g 
and 143 mg/g 

SNTs 53.8 m2/g, ZnSNTs  8.8 m2/g, pH 6, U(VI) 
10mg/L, time 60 min,Langmuir model 

(Tripathi et al. 
2018) 

Adsorption(Feroxyhite (δ–FeOOH)  
dispersed with sodium dodecyl 

sulfonate (SDS)) 

Aqueous 
solutions 

Adsorption capacity of SDS/ 
δ–FeOOH for Tl+ and UO2 2+ 

was 182.9(99.5%) and 
359.6(99.7%) mg/g 

UO2 2+ 10 mg/L, pH 7,Time 10 min, Freundlich 
isotherm 

(Huang et al. 
2021) 

Adsorption(Phosphate functionalized 
poly(vinylalcohol)/poly(acrylic acid)) 

Aqueous 
solutions 

Adsorption capacity 
277.78 mg/g 

Uranium 30 mg/L, pH 5.5, temperature 318 K, time 
180 min (Xie et al. 2020) 

Electrosorption(Porous phosphate–
functionalized grapheme) 

Aqueous 
solutions 

Adsorption value equal to 
545.7 mg/ g pH 5.0,1.2 V, U(VI) 100 mg/L, 298 K, 21 min (Liao et al. 

2019) 
Adsorption (Citric acid–crosslinked β–

cyclodextrin polymer) 
Aqueous 
solutions 

Adsorption capacity 
150 mg/g 

U(VI)5–80 mg/L, pH=4.0, reaction time 60 min and 
T=25 °C, y Langmuir and Freundlich isotherm 

(Ullah et al. 
2019) 

Adsorption (Chelating resin grafted 
alkyliamide ) 

Aqueous 
solutions Adsorption value 64.9 mg/g U(VI) 100 mg/L, pH 5.0, reaction time 48 h, 

Freundlich isotherm 
(Liu et al. 
2018b) 

Nanocomposite(Magnetic grapheme) Aqueous 
solutions 455 mg/g (90.5%) U (VI) 50–250 mg/L, pH  6, adsorbent dosage300 

mg/L, 60 min at room temperature, Langmuir model 
(El–Maghrabi 

et al. 2017) 

Adsorption(Carbon nanotubes) Aqueous 
solutions 32.46 mg/ g (95%) U 20 mg/L, pH 5.0,Time 10 min, Langmuir model (Yu & Wang 

2016) 
Adsorption (Polyamine functionalised 

exchange resins) 
Aqueous 
solutions 

Adsorption capacity 269.50 
mg/g 

U 1000 mg/L,pH 1–6, time 24 h, at room 
temperature, Langmuir model 

(Amphlett et al. 
2018) 

Adsorption metal–organic framework 
(MOF–5) 

Aqueous 
solutions 

Adsorption capacity 237.0 
mg/g U(VI) 0.01 M, pH 5.0 , T = 298K, 5 min (Wu et al. 

2018) 
Nanoadsorbents are used for removal of uranium and other compounds from aqueous solutions due 
to their high surface area, porous frame and short adsorption equivalency time. Various types of 
nanoadsorbents, such as modified silica, metal oxides, nonporous carbon/polymer composite, 
graphene oxide, graphene oxide/activated carbon felt, layered double hydroxide/graphene hybrid 
metal, activated carbon, multiwalled carbon nanotubes (MWCNTs), graphene oxide and iron 
oxide/graphene nanocomposite have been used for uranium removal from water and wastewater. In 
general, nanocomposites have the highest adsorption capacities as compared with pure 
constituents(El–Maghrabi et al. 2017). One study illustrated that the adsorbent(Titanium dioxide) was 
capable of reducing uranium by about 99%(Wazne et al. 2006). 
Another study reported the adsorption capacity of Titanate nanotubes (TNTs) for U(VI) to be 333 mg/g 
at pH span from 4 to 6  (Liu et al. 2016). 
A study also found the removal of uranium to be 81, 59, 40 and 70 mg/L using electrospun nanofibers, 
TiO2 NPs, SrTiO3 NPs and TiO2 electrospun nanofibers, respectively (Hu et al. 2018). Another study 
reported that the adsorption capacity was obtained to be 595.3 mg/g using hydroxylated titanium 
carbide (Ti3C2(OH)2) for U(VI)(Zhang et al. 2016). 
Another study stated that the best adsorption capacities of plasma– and chemical–grafted 
amidoxime/carbon nanofiber hybrids (p–AO/CNFs and c–AO/CNFs) used for removal of 238U(VI) from 
wastewater, seawater, and groundwater were 588.24 mg/g and 263.18, respectively(Sun et al. 2017). In 
a study, the capability of uranium  adsorbent was reported to be between 0.1 and 3.2 mg/g in the 
temperature range of 15–30 ₒC for an examination phase ranging from 2 hours to 240 days using 
synthetic polymers with amidoxime ligands for uranium removal from seawater, (Kim et al. 2013). One 
study found the  adsorption capacities of 0.66 and 0.74 mol/ kg at pH=1to5 by using polyacrylamide–
expanded perlite(Akkaya 2013). Additionally, using  polyacrylonitrile fibers in a research study, the 
utmost adsorption capacity was reported to be 163 mg/g for U(VI) (Wang et al. 2020a). Fan et al. 
demonstrated that  magnetic Fe3O4@SiO2 composite particles were highly capable of removing uranium 



ANNALS of Faculty Engineering Hunedoara – INTERNATIONAL JOURNAL OF ENGINEERING 
Tome XXII [2024]   |   Fascicule 2 [May] 

116   |   University Politehnica Timisoara – Faculty of Engineering Hunedoara 
ISSN 1584 – 2665 (printed version); ISSN 2601 – 2332 (online); ISSN-L 1584 – 2665 

from aqueous media and the utmost U(VI) adsorption capacity was around 52 mg/L at 25◦C(Fan et al. 
2012). In another study, the  adsorption capacity of carbonaceous adsorbent ( THC–COOH) to remove 
uranium from polluted water was obtained to be 205.8 mg/g at pH 6 (Liu et al. 2013). 
In a study, the maximum capacities of about 22.2 mg/g and 25.64 mg/g were obtained for Graphene 
oxide (GO)  and Fe–Ni/GO, respectively(Rohith et al. 2020). Using a metal–organic framework for U(VI) 
and Th (IV) in another study, the adsorption capacity was obtained to be 227.3 and 285.7 mg/g, 
respectively (Alqadami et al. 2017). Yang et al. found the adsorption capacity of up to 200 mg/g U(VI) 
using metal–organic framework(Azo and Amide Groups)(Yang et al. 2018). 
Using MOF@cotton fiber (HCF) composite in another study by Yang and et al., the best sorption 
capability for U(VI) was obtained to be 241.28 mg/g at pH 3 (Yang et al. 2020). These methods (various 
adsorption processes) need to be applied in natural waters (surface and ground waters) as most of the 
presented results were obtained using syntactic waters.  
▓ Bioremediation process 

It was assumed that uranium would be sedimented from the watery stage, but would not be eliminated 
from the place. This attitude would be valuable because no second product and no next byproducts are 
generated. It was mainly supposed that such a technique would contain a regularity of boreholes 
arranged in a method that provided optimum underground remediation using native bacteria. Today, 
bioremediation of groundwater affected by dissolved metals, metalloids, and radionuclides may be one 
of the most important problems for in situ environmental remediation(Table 2). Uranium removal from 
the ground requires long–time stability of the sediment, indicating  that a redox buffer is perhaps 
produced and uranium decreased to prepare adequate stableness of uraninite to considerably retain 
the uranium level below the standard limits in the groundwater after remediation (Abdelouas et al. 
2018)  . In their study, Saini et al.  reported an utmost adsorption capability of 588.24 mg/g in 2 h using 
biosorption technology (melanin pigment)(Saini & Melo 2013). One study reported that  Catenella 
repens, a red weed grown in the sea, is capable of finely absorbing uranium (VI) from aqueous 
media(Bhat et al. 2008). Another study reported that the biosorption of thorium by Rhizopus arrhizus 
revealed prosperous removal of about 90–95% of thorium(White & Gadd 1990).In a study by Xie et al. 
an improvement was observed in the uranium (VI) removal with raising pH level at 5 h, for example  from 
19.4% at pH 4.52 to 99.7% at pH 8.30 (Xie et al. 2018). One study reported that the precipitation of 
uranium increased from ≤55% up to 70–90% within the pH range of 2–8 in presence 
of Pseudomonas putida bacteria(Kenney et al. 2018). A study by Abdehvand et al. indicated that the 
utmost uranium elimination was 97% at pH6.4 using Shewanella sp RCRI7 bacteria(Abdehvand et al. 
2017). 

Table. 2 Bioremediation and biological treatment for elimination of uranium from various types of water 
Technique Environment Elimination performance Comment Ref 

Biological(Pseudomonas putida) Aqueous solutions Precipitation  rate of 70–90% U 10 mg/L, pH 2 to 12, (Kenney et al. 2018) 

Bioremediation(in situ) Groundwater 99.9% after 90 days U(VI)  235 mg/L, pH  7.4, at 
24°C 

(Abdelouas et al. 
2018) 

Bioreduction seawater 19.4% at pH 4.52 and 99.7% at 
pH 8.30 Contact time 5 h, 0.001 mol/L (Xie et al. 2018) 

Biological (Arthrobacter G975 strain) Groundwater 85% at pH 7.3 at 24–h U(VI) (61.76 μM/l), 
temperature = 25 ◦C (Carvajal et al. 2012) 

Biological (Shewanella oneidensis) Water 87.5% pH = 8.5, U (VI) (1 mmol/l) (Alessi et al. 2014) 
Biological (Saccharomyces 

cerevisiae) Water 98% after 1000–min pH = 5.0, U (VI) (10 mg/l), 
temperature = 30◦C, 250 rpm (Zheng et al. 2018) 

Biological (Yarrowia lipolytica) Aqueous solutions 35% after 15–30 min and 
45.5% after 24 h U (VI) 50 µM, pH= 7.5 at 30 ºC (Kolhe et al. 2020) 

Bioremediation((Rhodosporidium 
toruloides) flooding water 350 mg/g after48 h U 6 mM, 30 ˚C and 130 rpm (Gerber et al. 2018) 

▓ Phytoremediation 
This technique can be used for in–situ or ex–situ removal of pollutants from ground and surface waters. 
Phytoremediation mechanisms of this technique include rhizofiltration, hydraulic control, and 
phytovolatilization(Dinis & Fiúza 2021). 
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Rhizofiltration is the absorption of pollutants by the roots of plants that are grown hydroponically. The 
pollutants are then translocated, and aggregated into different parts of the plant, such as plant shoots 
and leaves. In hydraulic control, the motion of pollutants is slowed down in groundwater using deep–
rooted plants. Phytovolatilization is presented to treat water with water and releases the pollutants into 
the air via their leaves(Dinis & Fiúza 2021). Another study by Yang et al. demonstrated that the bean 
(Phaseolus vulgaris L. var. vulgaris) reduced the level of uranium up to 90.2% at 12 h and up to98.9% at 
72 h (Yang et al. 2015). 
A study by Vera Tome et al. showed that by rhizofiltration using Helianthus annuus L. the natural uranium 
226Ra were fixed in the roots by about 50% of and 70%, respectively (Tomé et al. 2008).One study 
indicated that the root surfaces of ordinary reed in a wetland could absorb uranium by about 87.1% 
(Wang et al. 2015b). Another study reported the highest rate of uranium accumulation in Rhizofiltration 
(Raphanus sativus L), with a mean bioconcentration factor (BCF) of 2683.5(Han et al. 2021). In a study by 
Tayyab  Ahsan et al.,  bacterial consortia (Leptochloa fusca (L.)) was found to further improve uranium 
sorption capacity up to 53–88%(Ahsan et al. 2017). 
▓ Photocatalytic process 

Undoubtedly, investigation of the mechanism of uranium (VI) conversion during photocatalytic reactions 
is very important for the expansion of suitable photocatalysts and enhancing the reduction performance 
of uranium (VI). Nevertheless, in most of current research, further attention seems to be paid to the 
reasons for improvement of photocatalysts efficiency rather than the process of uranium (VI) 
conversion. Despite the photocatalysts efficiency, uranium (VI) reduction was done by photogenerated 
electrons on the CB of irradiated catalysts or reductive radical intermediates generated while electron 
sacrifices exist (Yu et al. 2019). Investigation of the effect of environmental parameters, such as pH, 
concentration of ions, catalyst dose,  uranium (VI) level, coexisting ions, dissolved oxygen (DO), organic 
matters (OMs), initial level of metals, intensity of light, photocatalyst value, temperature, etc., on the 
photocatalytic activity is necessary(Table 3). A study by Wang et al. demonstrated that photoreduction 
reduced the uranium level up to 95% at 135 min, initial uranium (VI) concentration of 0.42 mM, and pH 
5.5 (Wang et al. 2015a). One study reported that the best elimination rate of 99% was obtained with 
0.021 mM uranium (VI) in 240 min and UV– visible light (300 W Xe arc lamp)(Guo et al. 2016). Another 
study by Li et al. demonstrated that the photoreduction reduced uranium level up to 80% at 240 min, 
with an initial uranium (VI)concentration of 0.42 mM, pH 3 and 150 W Xenon arc lamp(Kim et al. 2015). 
The other study reported the photocatalytic efficiency to be 80%  within 180 min, with an initial uranium 
(VI) concentration of 0.21 mM at pH 4 using photocatalytic (UV–visible light and Ti3C2/SrTiO3)(Deng et al. 
2019). In a study by Liu et al., the photocatalytic efficiency was obtained to be 90%  within 240 min, initial 
uranium (VI) concentration of 0.084 mM at pH 5 using photocatalytic (Simulated solar light and 
Niobate/Titanate)(Liu et al. 2018a).  

Table. 3 Photocatalytic process for elimination of uranium from various waters 
Technique Environment Elimination performance Comment Ref 

Photocatalysis/ 
Photoconversion Seawater 100% at 170min(19.49 mg/g) and pH 

= 6.0 
TiO2=0.6 g/l, 300 W high–pressure Hg 

lamp, U(VI) (0.0001 mol/ L) (Matteoda et al. 2019) 

Photo–reduction Water 59% at4–h U(VI) (20 mg/l), TiO2, pH = 6.9, photo 
intensity = 160 mW/cm2 (Jiang et al. 2018) 

Heterogeneous photocatalytic 
reduction Water 94% at120–min 

U(VI)= 0.25 mmol/L, pH = 3.0, 125W 
lamp, g–C3N4/TiO2= 0.25 g/L, TiO2= 1 

g/L 

(Salomone et al. 
2015) 

photocatalytic reduction Water 84.5% (~2990 )mg/g at 60 min 300 W Xe lamp, pH = 6.0, C(UO2 2+) = 
0.01 mol/L (Wang et al. 2020b) 

photocatalytic reduction Waste water 96.02%( 2880.6 mg/g) LED light, mGO/g–C3N4=1 – 5 mg, pH 
6,co=1–100 mg/L, T= 298 K (Dai et al. 2020) 

photocatalytic reduction Seawater 
more than 99%(500 mg/g) after 30 

min with visible light and higher than 
98% in 60 min with sunlight 

350 W Xe lamp, pH 4–6, co=100 mg/L (Gong et al. 2021) 

Photoconversion Seawater About 100% in 100 min 
U(VI) 0.2 mM, TiO2= 0.6 g/L, UV light 

(350 W mercury 
discharge lamp) 

(Godoy et al. 2019), 
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▓ Membrane processes 
Nanofiltration membranes are capable of selectively removing uranium (VI) from mineral water with a 
comparatively high selectivity, regardless of a high level of alkaline and alkaline–earth cations. As a result, 
nanofiltration tools can be weighed appropriate for decreasing the uranium (VI) level in potable water 
to a level below the maximum acceptable level determined by the World Health Organization (WHO). 
The rejection of uranyl is largely due to the effect of charge between the uranyl carbonate complex and 
the charged membrane (Favre–Réguillon et al. 2008). 
Despite the strengths of membrane techniques (reverse osmosis and nanofiltration), fouling, scaling, 
high energy and capital costs, and adjustment of pH of the exit water are among their limitations (Khedr 
2009). Natural organic matter (NOM) and co–exiting ions significantly affect uranium maintenance in 
nanofiltration/reverse osmosis in natural waters. Besides calcium, NOM can shape several soluble 
complexes with uranium. The uranium–NOM complex causes an increase in the amount of uranium 
precipitated to the ultrafiltration membrane. However, the complexes cannot be retained as they are 
still smaller than the size of ultrafiltration membrane's pores. Given the effective NOM removal by 
nanofiltration/reverse osmosis, the efficient rejection of any uranium bound to NOM is expected. 
Calcium can also affect uranium owing to the formation of stable complexes of calcium–uranyl–
carbonate (Shen & Schäfer 2014). In comparison to ion exchange methods, the main benefit of 
membrane filtration is that it is a continuous process with no need for further chemical products (e.g., 
adsorbent regeneration). This method can be used as a viable and cost–effective technique for in situ 
water remediation(Table 4).  
The study of Hoyer et al. demonstrated that 99% uranium removal was achieved using nanofiltration 
and reverse osmosis membranes(Hoyer et al. 2014).One study  found that the nanofiltration efficiently 
rejected 95–98% of uranyl–carbonate complexes(Favre–Réguillon et al. 2008). Reverse osmosis has 
been used for removal of radium–226, cesium–137, strontium–89, iodine–131 radium–228, and uranium(Sorg 
1988; Dinis & Fiúza 2021). 
Favre–Re’guillon et al. could achieve an uranium removal of 90% using nanofiltration (Favre–Réguillon et 
al. 2008). Radium, uranium, and radon were removed using nanofiltration and reverse osmosis (Khedr 
2013).  
In a study, reverse osmosis membranes were used for the purification of uranyl sulfate compounds with 
uranium levels of above 5000 mg/L and retention in the range of 91% to 99.8% were achieved (Sastri & 
Ashbrook 1976). In another study, Khedr demonstrated that reverse osmosis and nanofiltration are in 
defined shapes preferable to the most popular traditional techniques of resin, chemical sedimentation, 
coagulation, and adsorption on surface active medium. Whilst reverse osmosis and nanofiltration could 
effectively retain uranium and radium, they were incapable of eliminating gaseous contaminants like 
radon (Khedr 2013).One study showed that reverse osmosis and nanofiltration can eliminate uranium 
by about 99% (Katsoyiannis & Zouboulis 2013). 

Table. 4 Membrane filtration for elimination of uranium from various waters 
Technique Environment elimination performance Comment Ref 

Nanofiltration Drinking 
water 96% U 0.02 mg/L, pH 7, pressure of 1 bar, temperature 20 °C (Favre–Réguillon et al. 

2008) 

Nanofiltration Mine Water rejections more than 95% feed flow rate 200–225 L/ h, flux 30 to 35 L/ m2. h operating 
pressures 5 to 20 bar ,T= 25 °C pH 3 (Mullett et al. 2014) 

Reverse osmosis 
and nanofiltration Groundwater 99% feed pressures of 6 and 8 bar for NF and RO, pH=7.5–8, 25 °C (Khedr 2013) 

NF/RO Drinking 
water Up to 95% High performance and Membrane fouling (Shen & Schäfer 2014) 

UF Waters retention coefficient 
0.88–0.91 flow rate=82–86 L/(m2 h), U(VI) 10 mg/L, pH 7–8 (Yurlova 2020) 

UF water retention coefficient of 
0.94–0.95 U(VI) 10 mg/L, pH=5–9, operating pressure0.2 MPa, (Kryvoruchko et al. 2004) 

▓ Other techniques for uranium removal from various types of water   
 Ion exchange 

This operation unit capability and the resin selectivity are significant factors affecting resin selection. 
Cation and anion resins have been evaluated and used for uranium elimination. There are significant 
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remarks when evaluating the practicality of the ion exchange technique for uranium elimination. Water 
quality factors like inflow uranium level, water pH, competing ions, such as sulfates, must be advised 
during the assessment of the system's efficiency(Table 5) (Dinis & Fiúza 2021).One study used resin 
(anion exchanger resin) to remove uranium from water and obtained a removal performance of 97 to 
99% (Campbell et al. 2018). Another study reported that anion exchange is an extensively used 
technique, providing uranium elimination of above 95%(Katsoyiannis & Zouboulis 2013).  
A study indicated that  the best elimination (92–93%) was obtained with 20–25 mg/L of ferric sulfate at 
pH 10 (Sorg 1988). In their study, Barton et al. indicated that ion–exchange is the best proficient 
elimination technique because it can remove about 98% of anionic uranium carbonate types (Barton et 
al. 2004). Another study reported that up to 2,500 µg/mL of uranium was kept with up to 99% efficiency 
at pH 3(Aziz et al. 2010). In a study by Petersková et al., the maximal sorption capacity was reported to 
be 22.78 mg/g for uranium(VI) using resin with phosphonic and sulphonic acidic groups (Petersková et 
al. 2012). 

 Conventional coagulation 
Uranium removal using the coagulation method is possibly done via adsorption and co–precipitation of 
the dissolved uranyl complexes by the coagulant precipitates. In this method, water pH, the level of 
radionuclides, and the coagulant dose significantly affect elimination performance (Baeza et al. 2006). 
Materials, such as lime, alum, barium chloride, ferrous sulfate, sodium hydroxide, ferric sulfate, and ferric 
chloride are used for uranium removal in this method. Though being efficient, common methods of 
uranium removal have disadvantages like sludge production, high cost, and challenge of final disposal 
(Dinis & Fiúza 2021).  
There are various instances explaining the use of this technique to remove uranium. For example, one 
study indicated that barium chloride is particularly used for radium removal from uranium mill process 
waters, and the removal rates were reported to be about 95–99%(Vance et al. 2006). The removal value 
for the same content of 25 mg/L of aluminum sulfate was reported to be only 48% and 21%, respectively, 
at pHs 8 and 4 (Sorg 1988). A study claimed that an efficiency of 80%, 92% and, 95% could be obtained 
respectively by the use of ferric sulfate, ferrous sulfate, and alum for uranium and cesium removal from 
water (Sorg 1988).  
Katsoyiannis and Zouboulis stated that a removal efficiency of above 80% can be obtained at pH=6–10 
by coagulation with ferric or aluminum salts, and lime is capable of removing uranium at rates above 
90%, but only at pH more than 9.5(Katsoyiannis & Zouboulis 2013). In their study, Nam Kim et al. used 
sodium hydroxide, calcium hydroxide, and ammonium hydroxide for uranium precipitation (Kim et al. 
2011). Another study found the elimination of uranium(VI) by quartz sand in alkaline sodium chloride 
solutions to be about75 to 96%  at pHs 10.5 and 11.5 at 48 h(Kirby et al. 2020).  

Table 5. Other techniques for uranium removal from various types of water 
Technique Environment Elimination performance Comment Ref 

Coagulation, settling, and filtration Groundwater Up to 95% BaCl2 and Fe cl3,pH 10 (Khedr 2013) 

Electrocoagulation Mine water 
99.7% at 120–min by 70 

mA/cm2, 98% at 120–min by 
40 mA/cm2 

U (VI) 0.62 mg/L, pH = 2.68,  Iron–
stainless steel, Langmuir and Temkin 

isotherm 

(Nariyan et al. 
2018) 

Anion–exchange resin Groundwater More than 90% U 5 mg/L, pH 5,Time 1–8 h (Phillips et al. 2008) 
Weakly basic anion exchangers Aqueous solutions 10 mg/g U 10 µg/L, pH 6.5–9 (Riegel 2017) 
▓ World conditions of Uranium  

According to findings of a study on ground waters, the highest uranium level of 27 to 10,100 µg/L was 
obtained in the USA, and the lowest level of 3 to 8.6 µg /L was found in India (Table 6), while in surface 
waters, the highest uranium level of 0.05 to 900 µg/L was found in Turkey, and the lowest uranium level 
of 0.13 to590 ng/L was found in Japan (Table 7). WHO and EPA have recommended that uranium level 
in potable water should not exceed 30 µg/L (Table 8). 
In a study, Åström et al. found uranium levels of above 200 µg/ in groundwater and above 80 µg/L in 
surface water in Boreal Europe (Sweden, Finland, Russia)(Åström et al. 2009). Another study showed that 
the uranium level in tap water of Al–Najaf, Iraq was below 1.9 µg/L (Abojassim & Mohammed 2017).  
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Research studies in Canada, 
Finland, and Norway reported 
populations that used potable 
water with uranium levels of 700 
µg/L, 28 µg/L, and up to 20 µg/L, 
respectively. The highest levels 
were observed in ground water 
close to Helsinki with uranium 
concentration of 14870 µg/L  
(Hoyer 2017). Ground waters with 
high uranium levels in Kazakhstan, 
Australia and Canada are often 
found in uranium mining areas 
because these countries contribute 
to the world’s uranium generation 
by 64% (Shen & Schäfer 2014). 

Table 7. Uranium levels in surface water from several countries4 

Country Region/province/city Uranium level 
(µg /L) Ref 

USA North–central 
Colorado 20 – 83 (Schumann et al. 

2017) 

Kazakhstan Shu river 8–30 (Burkitbayev et al. 
2012) 

Japan River 0.00013–0.590 (Somboon et al. 2019) 
Australia Richmond River 0.001–2.77 (Atkins et al. 2016) 
Turkey Izmir 0.05–900 (Akyil et al. 2009) 

Argentina Córdoba Up to  0.47 (Matteoda et al. 2019) 
Sweden Northern Sweden 6–17 (Pontér et al. 2021) 

Sweden 
Streams (Kärrsvik, 

Kårevik, Ekerum and 
Laxemar) 

0.13–2.56 (Yu et al. 2019) 

South 
Africa Stream water 319 (Wang et al. 2012) 

Finland – 0.15–0.099 (Barescut et al. 2011) 
Korea – 0.01–49.7 (Yoon et al. 2013) 

Germany – 0.03– 48 (Gans 1985) 
Norway – 0.2–170 (Somboon et al. 2019) 

 

Table.8 International uranium guidance levels (µg /L) for drinking water 
Country/Organization Level 

( µg /L) 
Ref 

World Health Organization 30 (Edition 2011) 
United States Environmental 

Protection Agency 
30 (USEPA 2018) 

International Commission on 
Radiological Protection 

1.9 (Protection 2007) 

Canada 20 (Chen 2018) 
Australia 17 (NHMRC 2011) 

European Union Not 
specified 

(Directive 2013) 

Japan 2 (Evans et al. 2019) 
Malaysia 2 (Duggal et al. 2021) 
Germany 10 (Duggal et al. 2021) 
Uganda 5 (Duggal et al. 2021) 

New Zealand 20 (Duggal et al. 2021) 
South Africa 15 (Duggal et al. 2021) 

Oman 15 (Duggal et al. 2021) 
 

4. CONCLUSIONS 
The most common treatment techniques used for uranium elimination include ion exchange, 
bioremediation, reverse osmosis, nanofiltration, coagulation, and adsorption. The current findings have 
to be viewed in light of some limitations. Disadvantages of all processes were not available in most of 
the studies. The uranium removal by reverse osmosis and nanofiltration is very effective and the removal 
performance ranges from 90 to 99.8%. Disadvantages of these methods include scaling, fouling, high 
energy and fund expenditures, and the need for regulation of pH of the exit water. Removal 
performances obtained by coagulation with barium chloride, aluminum sulfate, ferrous sulfate, ferric 
sulfate, and aluminum sulfate range from 21 to 99%. Disadvantages of these processes include sludge 
generation, being costly, and the problem with final disposal. The elimination performance is based on 
the pH of raw water, kind of coagulant, coagulant content, and water compound. The most effective 
technique with a wide application is ion exchange whose elimination performance ranges from 95 to 
99%. Adsorption is among other most effective methods for uranium removal from water and 
wastewater. Besides, elimination efficiency is reported to be more than 80%. The removal is mainly 
dependent on pH, initial level of pollutant, adsorbent content and kind, flow rate of water, reaction time, 
pollutant solubility and temperature. The uranium removal rate by biosorption ranges from 50 to 90%. 
The main advantages of biosorption include low price, high efficiency, low waste generation and 

Table 6. Uranium levels in ground water from several countries 
Country Region/province/city Uranium level (µg /L) Ref 

China Southern China 550–3360 (Ma et al. 2020) 
Kosovo – 0.012–166 (Berisha & Goessler 2013) 

Kazakhstan – 1.9–35.9 (Uralbekov et al. 2011) 
Norway South Norway 2.04–246 (Frengstad & Banks 2014) 

Canadian Canadian Aboriginal 1–1418 (Zamora et al. 2004) 
USA South Carolina 27–10,100 (Wagner et al. 2011) 
USA Washington 1.03–1180 (Kahle et al. 2018) 
Iran Urmia Below 30 (Sohrabi & Amiri 2018) 

Korea Jurassic Granite Area 0.02 –1640 (Cho & Choo 2019) 
India Central Tamil Nadu 1.75–46.7 (Thivya et al. 2014) 
India Punjab 3–8.6 (Sharma et al. 2019) 

Finland Southern Finland 6–3400 (Prat et al. 2009) 
Argentina Córdoba Up to 17.3 (Matteoda et al. 2019) 

Brazil Rio de Janeiro State Up to930 1. (Godoy et al. 2019) 
Portugal NE Portugal 8.2–3483 (Costa et al. 2017) 

Switzerland Alpine regions 0.05–92.02 (Stalder et al. 2012) 
Saudi Arabia Hail province <0.8–90.8 (Duggal et al. 2021) 
Bangladesh Western Bangladesh <0.2–10 (Duggal et al. 2021) 
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biosorbent regeneration, eco–friendly and possibility of contaminant recovery. Overall, research works 
on uranium elimination from different types of water have advanced significantly. These research 
studies are required to be commercially executable for uranium elimination from water. the highest 
uranium level of 27 to 10,100 µg/L was obtained in the USA, and the lowest level of 3 to 8.6 µg /L was 
found in India (Table 7), while in surface waters the highest uranium level of 0.05 to 900 µg/L was found 
in Turkey, and the lowest uranium level of 0.13 to590 ng/L was found in Japan. 
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