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Abstract: The Sawi Transform Iterative Method (STIM), an effective analytical technique for olving nonlinear delay differential equations (NDDE), is presented 
in this work. Here, this approach combines the novel iterative method with the Sawi transform method for nonlinear equations. This approach solves the 
equations immediately and consistently without requiring a lot of computer work, linearization, or perturbations. The efficiency and dependability of the 
approach are validated by solving three example DDE scenarios. After adding up all eight approximate solution's iterations, the outcomes are compared with 
the exact solutions via tables and graphs. Based on the results obtained it was suggested that other classes of nonlinear differential equations may be solved 
using this method. 
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1. INTRODUCTION 
Mathematical models called delay differential equations (DDEs) are employed to illustrate problems in 
physics, engineering, biomathematics, and other fields. At two different time instants (past and present), 
the derivatives of unknown functions are involved in these equations. Mathematical models including 
DDEs are often encountered by researchers in the engineering and biological sciences fields (Singh, 
2021; Perviaz et al, 2021; Nakata, 2022; Mahatekar et al., 2021). Functional differential equations (FDEs) 
indicate a more versatile version of differential equations. The most basically and naturally occurring 
form of FDEs is the delay differential equation. Dynamical system classes, or DDEs, are extensively 
employed in a wide range of disciplines, including mechanics, economics, biology, ecology, physiology, 
and epidemiology. Many dynamic processes include time delays, which need to be taken into account 
in any correct model of these processes (Jumaa, 2017). 
In order to get approximate or precise solutions for both DDEs and nonlinear DEs, several researchers 
have recently devised and examined a variety of analytical and numerical approaches (Ali 2022, Deresse 
et al., 2021 & Deresse, 2022). The authors of the paper (Vilu et al., 2019, Deresse, 2022, Malikov et al., 
2020, Srivastava, 2020 & Amad et al., 2020) used the variational iteration technique (VIM) to find a 
preliminary solution to nonlinear DDEs. (Ghaffara et al., 2022) integrated the Padè approximation, Tarig 
transformation method, and differential transform approach to solve delayed protein degradation and 
delayed vector-borne illness models. By using this approach, the approximate solutions' region of 
convergence is expanded via the application of Padè approximation. Several NDDEs' numerical findings 
were generated with the assistance of Kumar and Methi (2021). This study explores the application of 
Sawi Transform Iteration Method (STIM) to Nonlinear Delay Differential Equation (NDDE). 
2. MATERIALS AND METHODS  
▓ Delay Differential Equation 

A differential equation in which a time delay is incorporated and the derivative of a function at a given 
time relies on both its value at that time and its values at earlier periods is known as a delay differential 
equation.  

 f (n) = f�t, y(t), f(t − τ1), … , f(t − τi)�, t ≥ 0    (1) 
f(t) = g(t) 

Here,  g(t) is the initial function, τi,   i > 0 is called the delay or lag function, f is given function with τi(t) ≤
t . If τi > 0 is a constant, it is a constant dependent delay; If τi(t) ≥ 0 is time dependent, it is time 
dependent and it u�τi(t)� ≥ 0 is state dependent delay. 
▓ Sawi Transform 

The Sawi transform, originating from the classical Fourier integral, is a mathematically simple method 
used to solve differential equations (Sawi, T.M. and Ezaki, S.M. 2011). Sawi transform is a new transform 
designed for functions of exponential order, focusing on functions defined by: 

A = �R(t):   ∃, M, l1, l2 > 0.  |R(t)| < Me
�|t|
kj
�
,   If  t ∈ (−1)j × [0,∞)�                  (2) 
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The integral equations for a function in set A define the Sawi transform, represented by the operator S, 
which needs a finite constant M. 

S{R(t)} = T(v) = 1
v2 ∫ R(t)  e−

t
vdt∞

0 .    t ≥ 0,    l1 ≤ v ≤ l2                        (3) 
▓ Properties of Sawi Transform 
 Linearity Property of Sawi Transform:   

Given the Sawi Transform of functions R(t) and W(t) are R(z, v) and W(z, v) respectively, then Sawi 
transform of [pR(z, t) + qW(z, t)] can be given as [pR(z, v) + qW(z, v)] where p and q are arbitrary 
constants. 
Proof: Let R(z, t) and W(z, t) be any two functions whose Sawi transform with respect to exist. For 
random constants p and q, we have 

  S{pR(z, t) + qW(z, t)} = pS{R(z, t)} + qS{W(z, t)}                                              (4) 
Based on the definition of Sawi transform, yields 

S{pR(z, t) + qW(z, t)} = pS{R(z, t)} + qS{W(z, t)                                                 (5) 
S{pR(z, t) + qW(z, t)} = 1

v ∫ �pR(z, t) + qW(z, t)�e−vt dt∞
0                                            (6) 

= p �1
v ∫ �R(z, t)�e(−vt)dt∞

0 � + q �1
v

 ∫ W(z, t)e−vt dt∞
0 �                                              (7) 

= pS{R(z, t)} + qS{W(z, t)}                                                                     (8) 
 Derivative Property of Sawi Transform 

If S{R(t)} = T(v), Then,  
S{R′(t)} = 1

v
T(v) − 1

v2
R(0)                                                                        (9) 

S{R′′(t)} = 1
v2

T(v) − 1
v3

R(0) − 1
v2

R′(0)                                                           (10) 

S{R(n) (t)} = 1
v2

T(v) − ∑ �1
v
�
n−(k−1)

R(k)(0)n−1
k=0                                                        (11) 

Table 1. Fundamental Properties of Sawi Transform (Higazy, & Aggarwal, 2021). 
S/N Property Mathematical Form 
1. Linearity S{pG1(z, t) + qG2(z, t)} = pS{G1(z, t)} + qS{G2(z, t)} 
2. Change of Scale S{G(pt)} = pg(pv) 

3. Shifting S{eptG(t)} = �
1

1 − pv
�
2

g �
v

1 − pv
�
v

 

 First Derivative S{g′(t)} =
1
v

g(v) −
1
v2

g(0) 

5. Second Derivative S{g′′(t)} =
1
v2

g(v) −
1
v3

g(0) −
1
v2

g′(0) 

6. nth Derivative S�g(n)(t)� =
1

vn
g(v) −

1
vn+1

g(0) −
1

vn
g′(0) …−

1
v2

g^(n − 1)(0) 

7. Convolution S{W1(t) ∗ W2(t)} = v2S{W1(t)}S{W2(t)} 
Table 2:  Sawi transform of some frequently encountered functions (Higazy, & Aggarwal, 2021). 

S/N R(t) S{R(t)} = r(v) 

1. 1 
1
v

 

2. t 1 
3. t2  2! v 

4. tn,   n ∈ N n! vn−1 

5. tn,           n > −1 Γ(n + 1)vn−1 

6. ept  
1

v(1 − pv) 

7. sin pt  
p

1 + p2v2
 

8. cos pt  
1

v(1 + p2v2)
 

9. sinh pt   
p

1 − p2v2
 

10. cosh pt 
1

v(1 − p2v2) 

 



ANNALS of Faculty Engineering Hunedoara – INTERNATIONAL JOURNAL OF ENGINEERING 
Tome XXII [2024]   |   Fascicule 3 [August] 

15   |   University Politehnica Timisoara – Faculty of Engineering Hunedoara 
ISSN 1584 – 2665 (printed version); ISSN 2601 – 2332 (online); ISSN-L 1584 – 2665 

Table 3:  Inverse Sawi Transform (Higazy, & Aggarwal, 2021). 
S/N w(v) W(t) = S−1{w(v)} 

1. 
1
v

 1 

2. 1 t 

3. v 
t2

2!
 

4. vn−1      n ∈ N 
tn

n!
 

5. vn−1           n > −1 
tn

Γ(n + 1) 

6. 
1

v(1 − pv) ept  

7. 
1

1 + (pv)2 
sin pt

p
 

8. 
1

v(1 + (pv)2) cos pt 

9. 
1

1 − (pv)2 
sinh pt

p
 

10. 
1

v(1 − p2v2) cosh pt 

▓ Sawi Iteration Method (SIM) 
Considering the general nonlinear Delay Differential Equation of the form (Tsegaye, Deresse, 2022 & 
Rezapour et al. 2022): 

dnf(t)
dtn

+ Rf(t) + Mf(t) = W(t)   n = 1,2,3,4                                                  (12)                                                  
Subject to the initial condition 

dn−1f(t)
dtn

�
x=0

= wn−1(t),       n = 1,2,3,4, …                                                   (13) 

refers to the derivative of f(t) of the order n, Mf(t) refers to the nonlinear term, R is a linear operator 
and W(t) refers to the source term. 
Taking the Sawi Transform of equation (13), we obtain 

S �d
nf(t)
dtn

� + S[Rf(t)] + S[Mf(t)] = S[W(t)]  n = 1, 2, 3, 4                                         (14) 
Invoking the differential property of Sawi Transform, yields 

1
vn

S[f(t)] − ∑ 1
vn−k+1

dnf(0)
dtn

n−1
k=0 + S[Rf(t) + Mf(t)] = S[W(t)]                                       (15) 

Multiplying the equation by vn, then we have 
S[f(t)] = ∑ vn

vn−k+1
n−1
k=0

dkf(0)
dtk

+ vnS[W(t)] − vnS[Rf(t) + Mf(t)]                                       16) 

S[f(t)] = ∑ vm−m+k−1 d
kf(0)
dtk

n−1
k=0 + vnS[G(t)] − vnS[Rf(t) + Mf(t)]                                  (17) 

S[f(t)] = ∑ vk−1 d
kf(0)
dtk

n−1
k=0 + vnS[W(t)] − vnS[Rf(t) + Mf(t)]                                      (18) 

Taking the Sawi Inverse of equation (18) 
∑ fn(t)∞
n=0 = S−1 �∑ vk−1 d

kf(0)
dtk

n−1
k=0 � + S−1{vnS[W(t)]} − S−1{vnS[R∑ Am(t)∞

k=0 ]}                       (19) 
where 

Am(t) = ∑ fr(t)fk−r(t)k
r=0                                                                   (20) 

By comparison of equation (19), the components of components of fn(t) becomes 

f0(t) = S−1 �� vk−1
dkf(0)

dtk

m−1

k=0

� + S−1�vnS[W(t)]� 
 

(1) 

f1(t) = −S−1[vS{Rf0(t) + A0(t)}]  
f2(t) = −S−1[vS{Rf1(t) + A1(t)}]  

⋮  

f3(t) = −S−1[vS{Rf2(t) + A2(t)}]  
The approximate solution of equation (3.12) is  

 
� f(x, t) = f0(t) + f1(t) + f2(t) + f3(t)
∞

0

 
 

(2) 
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3. RESULT AND DISCUSSION 
▓ Example 2.1 Considering the nonlinear Delay Differential Equation of the form (Mohyud-Din & 

Yildirim, 2010): 
 d3f

dt3
= −1 + 2f2 �

t
2
� ,      0 ≤ x ≤ 1 (23) 

Subject to the given initial condition 
f(0) = 1         f ′(0) = 0    f ′′(0) = 0 

The exact solution of equation (23) is  
f(t) = sin t 

Taking Sawi Transform of equation (23),  

S �
d3f
dt3

= −1 + 2f2 �
t
2
�� 

 S �
d3f(t)

dt3
� = −S[1] + 2S �f2 �

t
2
��  

(24) 
By the Sawi differential property we have 

 1
v3

S[f(t)] −
1
v4

f(0) −
1
v3

f ′(0) −
1
v2

f ′′(0) = −
1
v

+ 2S �f2 �
t
2
�� (25) 

Multiplying equation (25) by v3, we obtain 
 S[f(t)] =

1
v

f(0) + f ′(0) + vf ′′(0) − v2 + 2v3S �f2 �
t
2
�� (26) 

Taking the inverse Sawi transform of equation (26), we have 
 f(t) = S−1 �

1
v

f(0) + f ′(0) + vf ′′(0) − v2 + 2v3S �f2 �
t
2
��� (27) 

Substituting the initial condition into equation (27). Then, we have, 
 f(t) = S−1{1 − v2} + 2S−1 �v3S �f2 �

t
2
��� (28) 

According to the Sawi transform table, we have 
 f(t) = t −

t3

3!
+ 2S−1 �v3S �f2 �

t
2
��� (29) 

Therefore, the equation (29) becomes 
 f0(t) = t −

t3

3!
 (30) 

 fn+1(t) = 2S−1 �v3S �An �
t
2
���         n ≥ 0  

(31) 
where  

An �
t
2
� = � fr �

t
2
� fk−r �

t
2
�

k

r=0

 

When n = 0, we have 

A0 �
t
2
� =

t2

4
 

Then 

= 2S−1 �v3 S �
t2

4
�� =

1
2

S−1[v3 × 2! v] = S−1[v4] =
t5

5!
    

When n = 1, we have 

A1 �
t
2
� = −

t4

48
 

Then 

f1(t) = 2S−1 �v3S�−
t4

48
��   = −

1
24

S−1[v3 × 4! v3] = −S−1[v6] = −
t7

7!
      

When n = 2, we have 

A2 �
t
2
� =

t6

1440
 

Then 

f3(t) = 2S−1 �v3S�
t6

1440
��   =

1
720

S−1[v3 × 6! v5] = S−1[v8] =
t9

9!
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When n = 2, we have 
Therefore, the approximate solution is expressed as  

 
f(t) = � fn(t)

N

n=0

= f0(t) + f1(t) + f2(t) + f3(t) + ⋯ 
 

(32) 

 = t −
t3

3!
+

t5

5!
−

t7

7!
+

t9

9!
−⋯ (33) 

Then, the solution can be written in exact form as  
 f(t) = sin t (34) 

Equation (34) which is the resulting exact solution of equation (23) which is the same as the result 
obtained in (Mohyud-Din & Yildirim, 2010). 
▓ Example 2.2 Considering the nonlinear Delay Differential Equation (NDDE) of the form (Tsegaye, 

Deresse, 2022 & Rezapour et al. 2022): 
 df

dt
= 1 − 2f2 �

t
2
� ,      0 ≤ x ≤ 1 (35) 

Subject to the initial condition 
f(0) = 0 

The exact solution of equation (35) is 
f(t) = sin t 

Taking the Sawi Transform of equation (35), yields 

S �
df(t)

dt
= 1 − 2f2 �

t
2
�� 

Applying the Sawi linearity property 
 S �df(t)

dt
� = S[1] − 2S �f2 �t

2
��                                                         (36) 

By the Sawi differential property we have 
 1

v
S[f(t)] =

f(0)
v2

+
1
v
− 2S �f2 �

t
2
�� (37) 

Multiplying equation (37) by v, we obtain 
 S[f(t)] =

f(0)
v

+ 1 − 2vS �f2 �
t
2
�� (38) 

Taking the inverse Sawi transform of equation (39) 
 f(t) = S−1 �

f(0)
v

+ 1 − 2vS �f2 �
t
2
��� (39) 

Substituting f(0) = 0 into equation (39). Then, we have, 
 f(t) = S−1{1} − 2S−1 �vS �f2 �

t
2
��� (40) 

According to the Sawi transform table, we have 
 f(t) = t − 2S−1 �vS �f2 �

t
2
��� (41) 

Therefore, the equation (41) becomes 
 f0(t) = t (42) 
 fn+1(t) = −2S−1 �vS �An �

t
2
���         n ≥ 0 (43) 

where 

An �
t
2
� = � fr �

t
2
� fk−r �

t
2
�

k

r=0

 

When n = 0, we have 

A0 �
t
2
� =

t2

4
 

Then 

= −
1
2

S−1[v × 2! v] = −S−1[v2] = −
t3

3!
   

When n = 1, we have 
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A1 �
t
2
� = −

t4

48
 

Then 

f1(t) = −2S−1 �vS�−
t4

48
��   =

1
24

S−1[v × 4! v3] = S−1[v4] =
t5

5!
      

When n = 2, we have 

A2 �
t
2
� =

t6

1440
 

Then 

f3(t) = −2S−1 �vS�
t6

1440
��   = −

1
720

S−1[v × 6! v5] = −S−1[v6] = −
t7

7!
    

When n = 2, we have 

A3 �
t
2
� = −

t8

80640
 

Then 

f4(t) = −2S−1 �vS�−
t8

80640
��   =

1
40320

S−1[v × 8! v7] = S−1[v8] =
t9

9!
    

Therefore, the approximate solution is expressed as  
 

f(t) = � fn(t)
N

n=0

= f0(t) + f1(t) + f2(t) + f3(t) + ⋯ 
 

(44) 

 = t −
t3

3!
+

t5

5!
−

t7

7!
+

t9

9!
+ ⋯  

(45) 
Then, the solution can be written in exact form as  

 f(t) = sin t (46) 
Equation (46) which is the resulting exact solution of equation (35) which is the same as the result 
obtained in (Tsegaye, Deresse, 2022 & Rezapour et al. 2022) 
▓ Example 2.3 Considering the nonlinear delay differential equation of the form (Mohyud-Din & 

Yildirim, 2010): 
 df

dt
=

1
2

e
t
2f �

t
2
� +

1
2

f(t),          0 ≤ x ≤ 1  
(47) 

Subject to the initial condition 
f(0) = 1 

Taking Sawi Transform of equation (25), yields 

S �
df
dt

=
1
2

e
t
2f �

t
2
� +

1
2

f(t)� 

 S �
df(t)

dt
� =

1
2

S �e
t
2f �

t
2
� + f(t)� (48) 

Applying Sawi differential property we have 
 1

v
S[f(t)] −

f(0)
v2

=
1
2

S �e
t
2f �

t
2
� + f(t)� (49) 

Multiplying equation (27) by v, we obtain 
 S[f(t)] =

f(0)
v

+
1
2

vS �e
t
2f �

t
2
� + f(t)� (50) 

Taking the inverse Sawi transform equation of (50), we obtain 
 f(t) = S−1 �

f(0)
v

+
1
2

vS �e
t
2f �

t
2
� + f(t)�� (51) 

Substituting f(0) = 1 into equation (51). Then, we have, 
 f(t) = S−1 �

1
v
� +

1
2

S−1 �vS �e
t
2f �

t
2
� + f(t)�� (52) 

According to the Sawi transform table, we have 
 f(t) = 1 +

1
2

S−1 �vS �e
t
2f �

t
2
� + f(t)�� (53) 

Therefore, the equation (53) becomes 
 f0(t) = 1 (54) 



ANNALS of Faculty Engineering Hunedoara – INTERNATIONAL JOURNAL OF ENGINEERING 
Tome XXII [2024]   |   Fascicule 3 [August] 

19   |   University Politehnica Timisoara – Faculty of Engineering Hunedoara 
ISSN 1584 – 2665 (printed version); ISSN 2601 – 2332 (online); ISSN-L 1584 – 2665 

 fn+1(t) =
1
2

S−1 �vS �e
t
2fn �

t
2
� + fn(t)��         n ≥ 0 (55) 

When n = 0, we have 
 f1(t) =

1
2

S−1 �vS �e
t
2 + 1��         (56) 

 
Then 

 =
1
2

S−1 �vS �e
t
2� + vS[1]�   (57) 

 
But 

 S �e
t
2� =

1

v �1 − 1
2

v�
 

v �
1

v �1 − 1
2

v�
� =

2
2 − v

= 2�
1
2
�

v
2
�
n

∞

n=0

= ��
v
2
�
n

∞

n=0

= 1 +
v
2

+
v2

4
+

v3

8
+

v4

16
+ ⋯ 

 
         (58) 

 
(59) 
(60) 

 f1(t) =
1
2

S−1 �1 +
v
2

+
v2

4
+

v3

8
+

v4

16
+ ⋯+ 1�   

f1(t) =
1
2

S−1 �2 +
v
2

+
v2

4
+

v3

8
+

v4

16
+ ⋯�   

f1(t) =  t +
t2

2!
+

t3

3!
+

t4

4!
+

t5

5!
 

(61) 
 

(62) 
 

(63) 

Therefore, the approximate solution of equation (47) is expressed as  
 

f(t) = � fn(t)
N

n=0

= f0(t) + f1(t) 
 

(64) 

 = 1 + t +
t2

2!
+

t3

3!
+

t4

4!
+

t5

5!
+ ⋯  

(65) 
Then, the solution can be written in exact form as  

 f(t) = et (66) 
Equation (66) which is the resulting exact solution of equation (47) which is the same as the result 
obtained in (Mohyud-Din & Yildirim, 2010) 
4. CONCLUSION 
The Sawi transform technique has been applied to solve delay differential equations (DDEs), producing 
low error, precise, and effective approximations. In addition to offering a mathematical tool for nonlinear 
DDEs, the STIM approach is useful for increasing efficiency and accuracy. The application of the Sawi 
Transform as a dependable technique for getting approximate analytical solutions to nonlinear DDEs is 
examined in this study. The aim is to address intricate issues that frequently resist straightforward 
analytical resolutions. The findings of the study demonstrate how well and efficiently the Sawi Transform 
can approximate answers. Scholars and practitioners dealing with complicated dynamic systems with 
temporal delays might find the Sawi methodology to be a beneficial option because it has demonstrated 
its reliability via validation activities and comparative evaluations with different approaches. 
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