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Abstract: In an era where data breaches and cyber threats are increasingly prevalent, securing data has become a critical concern for developers and users alike. 
WebAssembly (or Wasm) has emerged as a highly efficient and secure framework for running code across multiple platforms. To ensure data protection in Wasm 
applications, various cryptographic techniques, Trusted Execution Environments (TEEs), and privacy–preserving methods have been integrated, addressing the 
growing demand for secure cloud–edge computing and IoT systems. This review provides a comprehensive analysis of these advanced techniques, comparing 
different approaches in terms of efficiency, security features, and compatibility with Wasm. The review explores the synergies between cryptographic techniques and 
TEEs, highlighting their role in protecting sensitive data while maintaining system performance. This work aims to offer insights into the latest advancements in data 
protection within Wasm environments, emphasizing the importance of security in modern distributed systems. 
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1. INTRODUCTION 
WebAssembly (Wasm) emerged in 2015 as a transformative approach aimed at enhancing the 
performance and security of web–based applications. The initiative, spearheaded by Brendan Eich, 
sought to address the limitations of asm.js by providing a more efficient, low–level, assembly–like 
language optimized for web environments [1–3]. WebAssembly was developed by a consortium of 
leading technology companies, including Mozilla, Microsoft, Apple, and Google, to overcome the 
limitations of traditional web technologies. Wasm enables developers to compile high–level 
programming languages into a compact, platform–independent format that can run natively on various 
environments, offering near–native performance, enhanced security, and cross–platform portability. 
Since its introduction, WebAssembly has seen rapid adoption, becoming an official W3C standard in 
2019 and establishing itself as a vital element in modern web and cloud ecosystems [4–7]. With the 
rapid expansion of cloud–edge computing, IoT, and embedded systems, safeguarding data integrity, 
confidentiality, and privacy has become a top priority. 
At its core, WebAssembly is designed with three principal goals: performance, security, and portability. 
Its performance stems from the ability to take advantage of modern hardware features and optimize 
code execution, ensuring that web applications perform efficiently even under heavy computational 
loads. From a security perspective, Wasm emphasizes memory safety, isolated execution, and 
sandboxing, creating a robust environment where malicious activities are minimized. Its portability 
further reinforces the flexibility of Wasm, enabling it to be utilized across various hardware architectures 
and platforms, including embedded systems, browsers, and cloud–edge computing environments. 
WebAssembly offers a binary instruction format that allows code written in languages like C, C++, Rust, 
and others to be executed in a sandboxed environment. This design ensures both speed and security 
while supporting a growing array of programming languages, including AssemblyScript, C#, Go, F#, Dart, 
Go, Kotlin, Swift, D, Pascal, Zig, and Grain [8–10]. 
The architecture of a WebAssembly binary is modular, comprising a collection of functions, global 
variables, and linear memory that can be efficiently executed through a stack–based machine model. 
Within this framework, an embedder – such as a host JavaScript engine –manages the loading and 
execution of Wasm modules, facilitating interactions with the host system and handling input/output, 
timers, and error management. Although WebAssembly was intended to provide secure execution, it is 
still susceptible to a range of security vulnerabilities that can be exploited by attackers. These 
vulnerabilities originate from various fundamental aspects of the WebAssembly framework, its 
integration with host environments, and its operational dynamics within web browsers. Key security 
issues identified include memory safety flaws, side–channel attack vectors, vulnerabilities related to 
speculative execution, and the complexities involved in its interaction with JavaScript [11–13]. 
This review discusses advanced techniques for data protection in WebAssembly, summarizing key works 
in the field, comparing their approaches, and presenting the latest updates. 
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2. RESEARCH METHODOLOGY 
A comprehensive survey was conducted to assess the growing emphasis into the latest advancements 
in data protection within Wasm environments based on five key steps:  
a) Developing review questions;  
b) Identifying relevant literature;  
c) Assessing the quality of the studies;  
d) Summarizing the collected evidence; and  
e) Analyzing the research outcomes.  
Recognizing the practical significance of this field, the review spans the years 2018 to 2024. It examines 
numerous journal articles that explore fundamental concepts and practical applications in this domain. 
▓ Cryptographic Techniques in WebAssembly 

Cryptographic methods are at the heart of data protection in WebAssembly environments. Several 
works focus on the integration of cryptographic libraries with Wasm to ensure secure storage, sharing, 
and transmission of data across heterogeneous platforms. One prominent example is the client–side 
encrypted storage system introduced by Sun et al. (2020), which leverages WebAssembly and the Web 
Cryptography API for data protection across platforms, enhancing security during data sharing without 
relying on external encryption solutions. While client–side encryption offers a potential solution, existing 
methods face three main challenges: inadequate security due to low–entropy PINs, cumbersome data 
sharing with traditional algorithms, and poor usability due to reliance on specific software or plugins. 
WebCloud addresses these issues and introduces additional features, such as robust user revocation, 
fast data processing through offline encryption and outsourced decryption, and compatibility with any 
device using a web browser. Built on ownCloud for file management, WebCloud incorporates 
WebAssembly and the Web Cryptography API for cryptographic operations. Comprehensive testing 
across various browsers, Android, and PC applications demonstrates its cross–platform efficiency. 
Additionally, WebCloud's design incorporates a practical ciphertext–policy attribute–based key 
encapsulation mechanism (CP–AB–KEM) scheme, which can be applied in other contexts [14]. 
Homomorphic encryption is another critical method, allowing computation on encrypted data without 
revealing the data itself. Attrapadung et al. [15] introduced an efficient two–level homomorphic public–
key encryption scheme in prime–order bilinear groups, capable of supporting polynomially many 
homomorphic additions and one multiplication over encrypted data in WebAssembly. This scheme 
parallels the Boneh, Goh, and Nissim (BGN) cryptosystem from TCC 2005, which operates in composite–
order bilinear groups. Their work improved upon the Freeman scheme from Eurocrypt 2010, the current 
standard for two–level homomorphic encryption in prime–order groups, enhancing efficiency across 
nearly all aspects while maintaining identical ciphertext sizes. The scheme is notably straightforward, 
functioning as a concatenation of two ElGamal encryptions "in the exponent" within asymmetric bilinear 
groups [15]. 
 

Table 1. The cryptographic approaches used in WebAssembly, comparing their efficiency, portability, and specific application areas. 

Cryptographic method Approach Efficiency Portability Applications 

Sun et al. [14] Client–side encrypted storage High High Cross–platform storage 

Attrapadung et al. [15] Homomorphic public–key encryption Moderate Moderate Secure cloud computing 

Riera et al. [16] Client–side hashing library High High Password hashing 
 

Riera et al. [16] proposed Clipaha, a client–side hashing scheme designed to enable high–security 
password hashing on resource–constrained server devices. This approach addresses the limitations of 
modern password hashing algorithms, such as Argon2, which typically require significant computational 
power and memory, making them unsuitable for IoT devices. Clipaha offers enhanced resilience against 
a wider range of attacks and accommodates complex usage scenarios not addressed by prior methods. 
Their implementation as a web library demonstrates a 50% performance improvement over similar 
libraries, successfully running on devices where previous solutions fail. 
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▓ Trusted Execution Environments (TEEs) in WebAssembly 
Trusted Execution Environments (TEEs) offer a secure and isolated execution space designed to protect 
sensitive data and computational processes from potentially compromised operating systems and 
malicious software. These environments leverage hardware–based security features to ensure that the 
integrity and confidentiality of the executed code and the data it processes are maintained, even in the 
presence of a hostile environment.  
In the context of WebAssembly, TEEs are utilized to establish secure enclaves that effectively safeguard 
data against unauthorized access. WebAssembly, being a low–level bytecode format, allows for the 
efficient execution of code across various platforms while maintaining performance and security. By 
integrating TEEs with WebAssembly, developers can ensure that sensitive operations – such as 
cryptographic key management or secure data processing – are executed within a protected 
environment that is isolated from the broader system, including the operating system and other 
applications. This synergy between TEEs and WebAssembly not only enhances security by providing a 
robust defense against a variety of threats, including side–channel attacks and code injection 
vulnerabilities, but also facilitates the development of privacy–preserving applications. As a result, the 
use of TEEs in conjunction with WebAssembly enables a new paradigm of secure computing that 
empowers developers to create applications that maintain user privacy and data integrity, thereby 
fostering trust in cloud–based and distributed computing environments. 
Zhao et al. [17] proposed the integration of Trusted Execution Environments (TEEs) with WebAssembly 
to create secure enclaves that protect sensitive data and computations from potentially compromised 
operating systems and malicious software. This combination leverages the isolated execution space of 
TEEs to ensure the confidentiality and integrity of data processed within WebAssembly applications. By 
utilizing TEEs, developers can perform critical operations – such as cryptographic key management – 
safely, thus enhancing security against threats like side–channel attacks and code injection 
vulnerabilities. This approach enables the development of privacy–preserving applications, fostering 
greater trust in cloud–based and distributed computing [17]. 
Almstedt et al. [18] discussed the widespread integration of IoT devices in industrial applications, yet 
highlight persistent challenges in their implementation within rural regions, particularly concerning 
privacy, data integrity, accountability, and ownership of data when processed at the edge. To tackle 
these concerns, they propose ContractBox, a system that facilitates accountable and secure data 
sharing based on a publisher–subscriber model while employing trusted computing at the edge. 
ContractBox utilizes a Trusted Execution Environment (TEE) to ensure the confidentiality and integrity 
of client data and code. Additionally, it harnesses WebAssembly to execute smart contracts within a 
secure, isolated environment, safeguarding both the host and associated smart contracts from 
malicious actions. The system guarantees the immutability and accountability of published data by 
storing it on a blockchain. The authors demonstrate that ContractBox can manage thousands of 
publications per second with various payload types and support multiple smart contract runtimes on a 
single edge device, achieving up to 35 times greater throughput than a comparable Hyperledger Fabric 
deployment. 
Ménétrey et al. [19] examined the significance of publish/subscribe systems in facilitating 
communication among numerous devices in distributed architectures. While these systems are widely 
used, their security often compromises portability in favor of enhanced integrity and attestation 
guarantees. Trusted Execution Environments (TEEs) offer a solution through enclaves that improve 
security; however, application development for TEEs is complex and often tied to specific architectures, 
limiting flexibility.  
The authors propose a novel approach using WebAssembly to create a portable, fully attested 
publish/subscribe middleware system for secure distributed communication. Their implementation 
includes a broker running within Intel SGX, utilizing established frameworks like MQTT and TLS. Their 
enhanced TLS protocol protects attestation information, and experimental results show a 1.55× 
decrease in message throughput with the trusted broker. They have made their work open–source to 
encourage reproducibility in research [19]. 
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Table 2. A comparison of different TEE implementations, highlighting their security features, speed, and compatibility with Wasm. 

TEE Implementation Features Security Level Speed Compatibility with Wasm 

Zhao et al. [17] Enclave snapshot, rewinding, nested attestation High High Excellent 

Almstedt et al. [18] Publish–subscribe middleware in Intel SGX High Moderate Good 

Ménétrey et al. [19] 
Trustworthy publish–subscribe middleware in Intel 

SGX High Moderate Good 

Qiang et al. [20] Two–way sandbox with Intel SGX High Moderate Excellent 
 

Qiang et al. [20] investigated serverless computing, a rising trend in cloud environments that allows 
users to deploy applications and process data without managing servers. However, this framework faces 
trust issues as neither cloud users nor providers can be fully trusted. To address these concerns, they 
introduce Se–Lambda, a serverless computing framework that enhances security by using an SGX 
enclave to protect the API gateway and a two–way sandbox combining the SGX enclave with a 
WebAssembly sandbox for the service runtime. In this model, untrusted user code is contained within 
the WebAssembly sandbox, while the SGX enclave safeguards privacy–sensitive data from malicious 
cloud providers. Additionally, a privilege monitoring mechanism is implemented in the SGX enclave to 
regulate access control for user function modules. Prototyped based on the open–source OpenLambda 
project, Se–Lambda demonstrates minimal performance impact while significantly improving security. 
▓ Privacy–Preserving Methods 

Privacy–preserving methods in WebAssembly are essential for safeguarding user data while maintaining 
optimal system performance. As web applications increasingly handle sensitive information, such as 
personal data, financial records, and health–related details, the need for robust privacy measures 
becomes paramount. WebAssembly enables the execution of code at near–native speed, which allows 
developers to implement complex cryptographic algorithms and data protection techniques efficiently. 
By leveraging the capabilities of WebAssembly, privacy–preserving methods can operate in a secure, 
sandboxed environment, ensuring that sensitive data remains protected from unauthorized access. For 
instance, techniques such as client–side encryption can be effectively implemented within a 
WebAssembly module, allowing users to encrypt their data before it is transmitted over the internet. 
This approach minimizes the risk of data exposure, even if the network is compromised. Moreover, the 
use of WebAssembly facilitates the implementation of advanced privacy–preserving technologies, such 
as zero–knowledge proofs and homomorphic encryption, which enable computations on encrypted 
data without revealing the underlying information. These methods provide an additional layer of 
security, ensuring that user privacy is upheld without sacrificing the performance and responsiveness 
expected from modern web applications. 

 

Table 3. Privacy–preserving methods in WebAssembly, focusing on encryption strength, quantum–resistance, and overall performance. 

Privacy–Preserving method Encryption strength Quantum resistance Performance 

Seo et al. [21] (Crystals–Kyber) High Yes High 

Qiang et al. [20] (Two–way sandbox) High No Moderate 

Sun et al. [14] (Encrypted storage) High No High 
 

Seo et al. [21] addressed the security threats posed by quantum computers executing Shor's algorithm 
to public key algorithms by presenting a portable and efficient implementation of the Crystals–Kyber key 
encapsulation mechanism (KEM), which is the sole KEM algorithm selected in the NIST Post–Quantum 
Cryptography competition. Their implementation utilizes WebAssembly (Wasm) to enhance portability 
while maintaining performance, combining JavaScript for the overall structure and Wasm for 
performance–critical operations, such as secure hash algorithm–3–based processes and polynomial 
multiplication. They further optimized the number theoretic transform (NTT)–based polynomial 
multiplication using single instruction multiple data (SIMD) capabilities in Wasm, leading to significant 
performance improvements. Benchmarks show that their implementation outperforms the latest 
JavaScript reference version by up to 4.02 times in key generation, encapsulation, and decapsulation 
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across major browsers, marking it as the first Kyber implementation using Wasm technology in a web 
environment [21]. 
▓ Integration of Cryptography and TEEs 

Integrating cryptographic methods with Trusted Execution Environments (TEEs) creates a robust 
framework for enhancing the security of WebAssembly (Wasm) applications [22]. TEEs provide an 
isolated execution space that protects sensitive data and operations from malicious actors, including 
compromised operating systems or external threats. This isolation is crucial for applications that handle 
confidential information, such as personal data, financial transactions, or proprietary algorithms. When 
cryptographic methods are employed alongside TEEs, several key benefits emerge:  
 Data Protection – Cryptography safeguards data confidentiality and integrity. By encrypting data 

before it enters the TEE, developers can ensure that sensitive information remains secure, even if 
the host environment is compromised. This is particularly important in cloud–based applications, 
where data is transmitted over potentially insecure networks.  

 Secure Key Management – TEEs can securely store cryptographic keys, protecting them from 
unauthorized access. This secure key management is essential for maintaining the effectiveness of 
cryptographic algorithms, as the exposure of keys can lead to significant security breaches.  

 Enhanced Trust – By combining cryptographic protocols with TEEs, developers can create systems 
that not only execute code securely but also provide guarantees of data authenticity and integrity. 
This integration allows for attestation mechanisms, enabling users and systems to verify that the 
code being executed within the TEE has not been tampered with and is running in a secure 
environment.  

 Performance Optimization – While cryptographic operations can be computationally intensive, TEEs 
are designed to perform these tasks efficiently. The secure execution environment can leverage 
hardware acceleration features to enhance performance, allowing cryptographic methods to be 
implemented without significant overhead.  

 Support for Compliance – As data protection regulations become more stringent, integrating 
cryptographic methods with TEEs can help organizations meet compliance requirements. The ability 
to securely manage and process sensitive data can aid in adhering to standards such as the General 
Data Protection Regulation (GDPR) or the Health Insurance Portability and Accountability Act (HIPAA). 

 

Table 4. Correlations between cryptographic techniques and TEE features in Wasm environments,  
illustrating how these two security layers complement each other. 

Cryptographic method TEE integration Memory 
safety Performance Application area 

Riera et al. [16] Compatible with Intel SGX High High Password management 

Seo et al. [21] Post–quantum secure TEEs High High Quantum–safe encryption 

Sun et al. [14] Encrypted storage + TEE High Moderate Secure data storage 
 

M. Ţălu [23] provided valuable insights into vulnerability discovery in WebAssembly binaries, enhancing 
the understanding of data protection techniques in this context. 
3. CONCLUSION 
Advanced techniques for data protection in WebAssembly environments are continually evolving to 
meet the challenges of emerging technologies such as quantum computing, cloud–edge infrastructure, 
and secure distributed systems. Cryptographic techniques, Trusted Execution Environments (TEEs), and 
privacy–preserving methods are crucial to achieving robust security for WebAssembly applications. This 
review highlights several innovative approaches that demonstrate the potential of Wasm in secure 
environments, comparing their effectiveness, performance, and application areas. 
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