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Abstract: In power systems, electrical power transformers are crucial for efficient electricity transmission. Transformer failures can cause significant disruptions, 
highlighting the need for effective maintenance strategies. This study explores predictive maintenance (PdM) for power grids using machine learning to identify 
transformer failures preemptively. It compares the effectiveness of Extreme Gradient Boosting (XGBoost) and Random Forest algorithms using operational and 
historical data. The research underscores the inefficiencies of traditional maintenance strategies and positions PdM as a proactive alternative for enhanced grid 
resilience and optimized maintenance schedules. Utilizing data from Kaggle, the study employs rigorous preprocessing and model development to evaluate both 
algorithms. Findings indicate that while both XGBoost and Random Forest show significant predictive capabilities, XGBoost outperforms Random Forest in accuracy 
and efficiency. This research highlights the potential of machine learning in improving transformer maintenance strategies and provides insights for future studies 
aimed at enhancing predictive models in electrical engineering. The results emphasize the importance of advanced analytical techniques to safeguard critical 
infrastructure and optimize maintenance practices in power systems 
Keywords: Failure Prediction, Power Transformer, Machine Learning, Predictive Maintenance (PdM), Predictive Models, Random Forest, Transformer Failures, 
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1. INTRODUCTION 
Transformers are crucial for stepping down high-voltage electricity for safe delivery to homes and 
businesses. However, they are susceptible to malfunctions, posing significant challenges to grid 
reliability and stability (Hussain et al., 2021). 
Transformer faults can be categorized into 
internal, which account for 70%-80% of 
transformer faults and external faults as depicted 
in Figure 1 below (Hussain et al., 2021).  
Traditional maintenance methods, based on 
fixed schedules or reactive repairs, are often 
inefficient (Rojek et al., 2023). Preventive 
maintenance involves regular, scheduled 
inspections and servicing to prevent equipment 
failures before they occur Rojek et al., 2023). 
Corrective maintenance, on the other hand, 
involves repairing or replacing components after 
a failure has occurred (Rojek et al., 2023). 
Rather than relying on preventive or corrective maintenance, a proactive strategy based on predictive 
maintenance can be employed. Predictive maintenance (PdM) uses machine learning to analyze 
historical data, such as load patterns, voltage levels, and frequency fluctuations, to predict potential 
transformer failures. This approach enables scheduled maintenance interventions, preventing failures 
and minimizing downtime, contributing to a more efficient and reliable transformer (Tianjin da xue et 
al., 2018). By tracking transformer data over time, predictive maintenance programs can identify trends 
and early indicators of equipment degradation, allowing for timely interventions. This proactive 
approach reduces unplanned outages and optimizes transformer performance. 
Machine learning, combined with IoT, plays a pivotal role in predictive maintenance. IoT devices feed 
real-time data to centralized systems, allowing for precise maintenance schedules (Marcelino et al., 
2021). Predictive maintenance, combined with machine learning, reduces breakdowns by 70%, 
increases productivity by 25%, and lowers maintenance costs by 25% (Rojek et al., 2023). This approach 
makes power system operators more proactive, efficient, and resilient. Machine learning algorithms like 
support vector machines (SVM), neural networks (NN), and decision trees (DT) have been used in PdM 
(Fei & Zhang, 2009; Y. Zhang et al., 1996). However, these often rely on direct sensor data, limiting their 

 

Figure 1: Electrical Faults of Transformer 
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applicability in scenarios with limited or unreliable sensor coverage. Among these algorithms, Extreme 
Gradient Boosting (XGBoost) and Random Forest stand out for failure prediction (Breiman, 2001; Zhang 
et al., 2019). XGBoost is known for its high performance and efficiency with large datasets, while Random 
Forest offers robustness and ease of interpretation. Therefore, this study compares XGBoost and 
Random Forest in transformer maintenance, evaluating their predictive capabilities using operational 
and historical data. Key performance metrics such as accuracy, precision, and recall are assessed to 
highlight the strengths and weaknesses of each algorithm. The rest of the article is structured as 
follows: Section 2 reviews related papers on the study. Section 3 explains the methodology used in the 
study. Section 4 presents the results and discussion of the study, and Section 5 provides the conclusion. 
2. REVIEW OF RELATED WORKS 
In a recent study, Wang et al., (2023) present a novel approach named TPE-XGBoost for diagnosing 
transformer faults using incomplete data. This methodology utilizes Bayesian optimization to fine-tune 
the hyperparameters of the XGBoost model, showcasing superior performance in comparison to 
alternative machine learning algorithms. A notable strength of this method lies in its capability to 
effectively handle incomplete datasets, as evidenced by its robust performance. However, the study 
highlights a limitation regarding reduced diagnostic accuracy when the rate of missing data exceeds 
20%, emphasizing the necessity for further enhancement, particularly in scenarios with a high missing 
data rate exceeding 30%. 
Chen et al., (2019) introduces a methodology for predicting transient stability status in power systems 
using the XGBoost model. Key features of the generator’s state are extracted, and redundant ones are 
removed. The paper emphasizes the XGBoost model as a competitive technology for transient stability 
prediction due to its advantages as a tree structure model that does not require data normalization and 
can effectively handle missing values. Despite its advantages, the paper calls for more empirical 
validation and real-world application to fully evaluate its effectiveness. 
The study by R. Zhang et al., (2019), explores the use of the XGBoost algorithm for diagnosing bearing 
faults in complex industrial environments. The research compares XGBoost with alternative tree models 
and highlights its superior performance in terms of both training time and accuracy. Notably, the paper 
emphasizes the importance of managing model complexity through regular coefficients and employing 
Bayesian optimization for parameter tuning. However, the study acknowledges limitations, including the 
need for high-quality data and challenges related to model generalizability and interpretability. Overall, 
the findings provide valuable insights into the potential of advanced machine learning techniques for 
industrial fault diagnosis. 
In the realm of artificial intelligence (AI) applications within Industry 4.0, particularly focusing on its 
utilization in maintenance processes Rojek et al., (2023) focuses on the use of AI methods, particularly 
artificial neural networks (ANN), to enhance the supervision of machine failures and support their repair. 
It addresses the challenges associated with unbalanced training data in real industrial settings and 
emphasizes the limitations of using supervised machine learning models in such scenarios. The study 
also proposed future research directions to enhance AI-based maintenance solutions' predictive 
accuracy and utility in industry, emphasizing the practical challenges that need further investigation. 
A study by Breviglieri et al., (2021) explored within an in-depth literature review centered on the 
application of deep learning models for predicting smart grid stability, with a specific emphasis on the 
Decentral Smart Grid Control (DSGC) system. The study highlights the challenges of integrating 
renewable energy sources into smart grids and underscores the significance of stability analysis in 
networked control systems. Acknowledging some limitations, such as the need for more generalization 
and extension of the analysis to larger grids with more than 10 users, the paper provides valuable 
perspectives on the complexities of smart grid stability prediction.   
A novel unsupervised analysis method for anomaly detection in industrial machinery by Carratu et al., 
(2023) using electrical current values and power grid parameters. The framework combines machine 
learning algorithms and traditional analysis, with a focus on optimizing performance and execution time. 
It includes a technique for analyzing temporal dynamics based on short-time Fourier transform (STFT) 
to enhance detection accuracy. Results show exceptional performance, with zero false positives across 
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all datasets tested and less than 4% 
undetected outlier events, surpassing 
expert evaluations and other existing 
methodologies. However, the paper 
acknowledges dependence on specific 
features, highlighting a potential 
limitation for future research with 
diverse anomaly types. 
3. METHODOLOGY 
This section discusses the proposed 
framework of this study in detail. First, 
the data set is described including its 
method of preparation for use in the 
proposed comparison framework. 
▓ DATASET 

The Distributed Transformer 
Monitoring dataset was collected via 
Internet of Things (IoT) devices, the 
dataset spans from June 25th, 2019, to 
April 14th, 2020, with updates recorded 
at 15-minute intervals (Sreshta, 2020). It 
consists of 21,174 rows and 17 
columns, with each row representing a 
unique observation and each column denoting a specific feature or attribute. The dataset encompasses 
both numerical and categorical variables, providing comprehensive insights into transformer health and 
performance. 
▓ DATA PREPARATION 

Pre-processing data is a critical step in transforming raw data into a machine-readable format, essential 
for effective utilization by machine learning models (Abbasi, 2021). This project involved several key 
steps to ensure data accuracy and uniformity, enhancing the models’ ability to learn and make accurate 
predictions. 
Data Cleaning: The first step in the data preparation process was data cleaning. This involved removing 
noise and inconsistencies from the dataset to ensure its integrity. Any missing values were identified 
and addressed to maintain the dataset’s completeness. 
Handling Missing Values: Handling missing data was a crucial part of the pre-processing phase. For most 
features, missing values were handled using interpolation, which estimates missing values based on the 
surrounding data points. For the dependent feature, missing data were handled using forward fill, which 
propagates the last observed value forward to fill in the gaps. 
Feature Selection: Feature selection was performed to identify the most relevant attributes for the 
predictive models. This step was crucial not only for maintaining the data’s accuracy and uniformity but 
also for removing multicollinearity identified from the correlation matrix. By eliminating highly correlated 
features, we ensured that the models, particularly XGBoost and Random Forest, did not suffer from 
multicollinearity, which could lead to overfitting. 
Using Python, this project employed libraries such as Pandas for data manipulation, NumPy for 
numerical operations, and Scikit-learn for various pre-processing techniques. These tools provided 
comprehensive functionalities to handle the entire workflow, ensuring the data was in the best possible 
shape for analysis and model training. 
Data Splitting: The final step in the data preparation process was splitting the data into training and test 
subsets. The data was divided into 80% for training and 20% for testing. The training set was used for 
fitting the models and tuning hyperparameters, while the test set provided an independent assessment 
of model performance. This approach facilitated robust and unbiased model evaluation. 

 
Figure 2: Study Framework 
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This preparation was key to developing reliable and efficient transformer failure prediction models and 
maintenance practices. 
▓  RANDOM FOREST ALGORITHM 

Random Forest is a robust ensemble learning 
technique that leverages the collective power of 
multiple decision trees to tackle complex problems in 
supervised learning (Wang et al., 2023). It’s versatile and 
can be applied to both Classification and Regression 
tasks in Machine Learning. This ensemble learning 
method combines a multitude of sensor readings and 
historical trends, enhancing accuracy and resilience in 
pinpointing potential failures (Wang et al., 2023). As the 
name implies, a “Random Forest” is a classifier 
comprising numerous decision trees on various 
subsets of the given dataset. It averages the results to 
enhance the predictive accuracy of the dataset (Wang 
et al., 2023). The more trees in the forest, the higher the 
accuracy, which helps prevent overfitting. The below 
diagram explains the working of the Random Forest algorithm: 
In classification, the algorithm begins by randomly sampling subsets of the training data with 
replacement. For each subset, decision trees are constructed using sensor readings and historical 
trends. At each node, a subset of features is randomly selected, and the optimal feature and split point 
are chosen based on their ability to minimize the Gini impurity. Gini impurity, a measure of the 
uncertainty or impurity of a set of samples, is calculated as: 

 
Gini(D) = 1 −�pi2

C

i=1

 (1) 

Here, pi is the probability of class i in node D. 
In regression, each tree analyzes relationships between features and actual values to estimate the 
remaining lifespan of equipment. The final predicted value for a sample is the average of predictions by 
all the individual trees, calculated as: 

 
y�(x) =

1
k
� y�i(x)
k

i=1

 (2) 

Here,  y�i(x) represents the predicted value by the ith decision tree for sample x, and k is the number of 
decision trees. 
▓  EXTRA GRADIENT BOOSTING (XGBOOST) ALGORITHM 

Gradient Boosting is a machine learning technique that builds a strong predictive model by combining 
the predictions of several weaker models. 
It’s particularly useful for regression and 
classification problems. XGBoost, or 
Extreme Gradient Boosting, is a scalable 
system for tree boosting developed by 
Chen and Guestrin. It uses Classification 
and Regression Trees (CART) as the base 
classifier and integrates them with 
gradient boosting (Chen et al., 2019). 
XGBoost adds a regularization term to the 
loss function, reducing model complexity 
and achieving a balance between 
accuracy and complexity. Each new CART 
is added by fitting the prediction residuals 

 
Figure 3: Random Forest Algorithm 

 

Figure 4: Extreme Gradient Boosting Algorithm 
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of the previous CART, and the accumulated prediction results of all CARTs yield the final model results 
(Wang et al., 2023). This makes XGBoost a highly efficient, flexible, and portable tool for machine learning 
tasks. The below diagram explains the working of the XGBoost algorithm: 
The mathematical equations guiding the model learning process are as follows (Chen et al., 2019) 
Objective function: 
 

Obj(Θ) = �[l(yi, y�i
(t−1) + ft(xi))]

n

i=1

+ Ω(ft) (3) 

Regularization term: 
 Ω(ft) = γT +

1
2
λ ∥ w ∥2 

(4) 
 

Simplified objective function: 
 

Obj(t) = �[l(yi, y�i
(t−1)) + gift(xi) +

1
2

hift2(xi)]

n

i=1

+ Ω(ft) 
(5) 

 

Final Objective Function  
 

Obj(t) = �[(� gi)wj
i∈Ij

+
1
2

(�hi + λ)wj
2]

i∈Ij

]

T

j=1

+ γT 
(6) 

 

In these equations, Obj(Θ) is the objective function to minimize, combining a loss term  l(yi, y�i
(t−1) +

ft(xi)) that measures the difference between predicted and actual values and a regularization term Ω(ft) 
that controls model complexity by penalizing the number of leaves T and leaf weights w. The simplified 
objective function uses gradients gi and Hessians hi to approximate the loss function, making 
optimization easier. The final objective function sums the contributions from all leaves, calculating 
scores based on the gradients and Hessians of instances assigned to each leaf, helping the algorithm 
make accurate predictions while avoiding overfitting. Where t is iteration value, x is inputted data, y is 
true label of dataset. 
▓ HYPERPARAMETER TUNNING AND FITTING 

Hyperparameter Tuning: For both XGBoost and Random Forest classifiers, hyperparameters are tuned 
using grid search. This involves exploring a predefined set of hyperparameters to identify the best 
combination that maximizes model performance. Grid search is performed with cross-validation to 
ensure robust and unbiased evaluation of each hyperparameter combination. 
Model Fitting: Once the optimal hyperparameters are identified, the best models are fitted on the 
training data. This step involves training the models using the entire training dataset to learn the 
underlying patterns and relationships within the data. 
Prediction: After training, predictions are made on the test data 
using the best models. 
▓ MODEL PERFOMANCE EVALUATION 

Performance evaluation involves using various metrics to assess the 
effectiveness of different machine learning algorithms (Abbasi, 
2021). The metrics used in this research include the following:  
Confusion Matrix:  is a performance metric used for statistical 
classification. It consists of a table layout that allows visualization of 
an algorithm’s accuracy and correctness (Abbasi, 2021).. It evaluates 
the predicted model against the actual class outcomes to see the 
number of correctly classified instances. Key terms include: 
 True Positive (TP): Actual value is 1 (True) and predicted value is 1 (True). 
 True Negative (TN): Actual value is 0 (False) and predicted value is 0 (False). 
 False Positive (FP): Actual value is 0 (False) and predicted value is 1 (True). 
 False Negative (FN): Actual value is 1 (True) and predicted value is 0 (False). 

 
Figure 5: Confusion Matrix 
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Accuracy is the ratio of correct predictions to the total number of predictions (Abbasi, 2021; Mohammed, 
2017). It is calculated as: 

Accuracy =
TP + TN

TP + FP + FN + TN
 

(7) 
 

Precision is the ratio of true positive predictions to the total number of positive predictions (Abbasi, 
2021; Mohammed, 2017). It is calculated as: 

 Precision =
TP

TP + FP
 

(8) 

Recall is the ratio of true positive predictions to the total number of actual positive (Abbasi, 2021; 
Mohammed, 2017). It is calculated as: 

Recall =
TP

TP + FN
 

(9) 
 

Specificity is the ratio of correctly predicted negative observations to all actual negatives (Abbasi, 2021; 
Mohammed, 2017). It is calculated as: 

Specificity =
TN

TN + FP
 

 

(10) 
 

F1 score is the harmonic mean of Precision and Recall, making it a better choice for evaluating 
imbalanced datasets (Abbasi, 2021).It is calculated as: 

F1 score =
2 ∗ Precision ∗ Recall

Precision + Recall
 

(11) 
 

Matthews Correlation Coefficient (MCC): is a measure of the quality of binary classifications, considering 
true and false positives and negatives (Chicco & Jurman, 2020). It is calculated as: 

MCC =
TP × TN − FP × FN

�(TP + FP)(TP + FN)(TN + FP)(TN + FN)
 

(12) 
 

The Area Under the Receiver Operating Characteristics (AUROC) curve is used to visualize the 
performance of a classification model across all classification thresholds (Abbasi, 2021). 
These metrics provide a comprehensive evaluation of the machine learning models, ensuring their 
effectiveness and reliability in predicting transformer failures. 

4. RESULT AND DISCUSSION 
A transformer dataset containing 21174 instances and 11 attributes was extracted from a CSV file and 
loaded into a Jupyter Notebook environment. After data collection, an exploratory data analysis (EDA) is 
carried out on the dataset to evaluate and classify the data's key features by means of visualizations, 
then data cleaning and preparation is carried out before the models are implemented. 

Table 1: Dateset Description 
 count Mean std min 25% 50% 75% max 

OTI 21174 30.17786 11.961138 0 26 30 34 250 
WTI 21174 0.259564 0.438406 0 0 0 1 1 
ATI 21174 27.740059 5.750776 0 24 28 32 44 
OLI 21174 69.661519 27.79258 36 40 64 100 100 

OTI_A 21174 0.00477 0.068902 0 0 0 0 1 
OTI_T 21174 0.00222 0.047063 0 0 0 0 1 

MOG_A 21174 0.101681 0.302236 0 0 0 0 1 
VL1 20652 241.023455 9.392606 0 235.8 242.4 247.3 261.2 
VL2 20652 240.490538 9.784313 0 235.5 241.9 246.4 261.3 
VL3 20652 239.923107 8.712857 0 235.5 241 245.1 261.3 
IL1 20652 70.56517 42.963096 0 43.6 67.5 98.4 224.1 
IL2 20652 56.522187 41.311167 0 28.7 48.7 80.3 253.6 
IL3 20652 79.705825 45.816941 0 53.1 77.7 111.9 247.3 

VL12 20652 363.387391 140.051283 0 397.4 416.2 427.1 446.5 
VL23 20652 362.494984 139.488304 0 398.2 415.3 424.9 444.8 
VL31 20652 363.871165 140.200657 0 399 416.5 427.3 447.3 
INUT 20652 25.170497 15.705378 0 15.3 24.8 35.1 145.8 

▓ DESCRIPTIVE STATISTICS OF DATA 
The dataset comprises 21,174 observations, detailing various parameters relevant to transformer failure 
prediction. Key features include oil temperature indicators (OTI, ATI, OLI), winding temperature indicator 
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(WTI), and electrical characteristics such as voltages (VL1, 
VL2, VL3) and currents (IL1, IL2, IL3). Descriptive statistics 
reveal that OTI has a mean of 30.18°C with a standard 
deviation of 11.96°C, ranging from 0 to 250°C, while ATI 
averages 27.74°C with a standard deviation of 5.75°C. 
OLI shows a mean value of 69.66 with a wider spread, 
indicating variability in oil levels. Electrical parameters, 
such as VL1, VL2, and VL3, show close mean values 
around 240V, with standard deviations near 9V, 
reflecting consistent voltage levels. Currents IL1, IL2, and 
IL3 display higher variability, with means around 70A, 
56A, and 80A respectively. Additionally, the dataset 
includes binary variables like OTI_A and OTI_T, and 
measured values for MOG_A, showcasing diverse data 
points crucial for predictive modeling. 
▓ CORRELATION MATRIX 

To further understand the data, 
the correlations between the 
features were checked to ensure 
that the correlation between them 
is not too high, making them 
suitable for machine learning 
algorithms and avoiding 
overfitting or underfitting the 
models. Figure 6 shows the 
heatmap of the features in the 
dataset. Notably, the variables 
VL1, VL2, VL3, and IL1, IL2, IL3 
exhibit strong positive 
correlations with each other, 
indicating that they capture 
similar information about the 
system's state, which suggests 
potential redundancy. Moderate 
correlations are observed 
between OTI, ATI, and CI1 with 
other features, hinting at their 
unique contributions to the 
dataset. Understanding these 
correlations is crucial for effective 
feature selection and engineering, 
ensuring that the models, 
particularly XGBoost and Random 
Forest, do not suffer from 
multicollinearity, which could lead 
to overfitting. By strategically 
selecting and possibly reducing 
features, the project aims to 
improve the robustness and 
accuracy of the predictive models. 

 
Figure 6: Correlation Matrix 

 

Figure 7: Data Visualization 
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▓ EXPLORATORY DATA ANALYSIS 
Visualizations relating to the distribution of the data to be used for the modeling are provided below. 
▓ RANDOM FOREST ALGORITHM 

The Random Forest model demonstrates strong performance at lower thresholds, achieving an 
accuracy of 98.43%, F1 score of 98.45%, recall of 98.43%, and precision of 98.49% at a threshold of 0.5. 
These metrics slightly decrease to 97.99% accuracy, 97.94% F1 score, 97.99% recall, and 97.95% 
precision at a threshold of 0.7. However, a substantial performance drop is observed at a threshold of 
0.9, with accuracy falling to 91.74%, F1 score to 89.01%, recall to 91.74%, and precision to 92.43%. 
While the ROC AUC consistently maintains a high value of 99.68% across all thresholds, indicating good 
overall discriminative power, the MCC (Matthews Correlation Coefficient) undergoes a dramatic decline 
from 99.55% at 0.5 to 88.46% at 0.7 and further to 39.84% at 0.9. This suggests a significant reduction 
in the model's predictive ability at higher thresholds. 

(a)  (b) (c) 
Figure 8: RF CM (a) at 0.5 (b) at 0.7 (c) at 0.9 

 
Figure 9: RF ROC 

▓ XGBOOST ALGORITHM 
The XGBoost model demonstrates consistent performance 
across different thresholds, maintaining high accuracy, F1 
score, recall, and precision levels. At a threshold of 0.5, the 
model achieves an accuracy of 98.5%, F1 score of 98.51%, 
recall of 98.50%, and precision of 98.53%. While these 
metrics slightly decline to 98.36% accuracy, 98.34% F1 score, 
98.36% recall, and 98.34% precision at a threshold of 0.7, 
and further to 97.52% accuracy, 97.40% F1 score, 97.52% 
recall, and 97.50% precision at a threshold of 0.9, the overall performance remains strong.  

(a) (b) (c) 
Figure 10: XGBoost CM (a) at 0.5 (b) at 0.7 (c) at 0.9 

Table 3: XGBoost Performance at different thresholds 
Measure Value at 0.5 Value at 0.7 Value at 0.9 
Accuracy 98.5% 98.36% 97.52% 
F1 score 98.51% 98.34% 97.40% 

Recall 98.50% 98.36% 97.52% 
precision 98.53% 98.34% 97.50% 

Roc 99.74% 99.74% 99.74% 
MCC 91.83% 90.76% 85.50% 

 

Table 2: Random Forest Performance 
Random forest perfomrance summary at different threshold 

Measure Value at 0.5 Value at 0.7 Value at 0.9 
Accuracy 98.43% 97.99% 91.74% 
F1 score 98.45% 97.94% 89.01% 

Recall 98.43% 97.99% 91.74% 
precision 98.49% 97.95% 92.43% 

Roc 99.68% 99.68% 99.68% 
MCC 99.55% 88.46% 39.84% 
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                                                   Figure 11: XGBoost ROC                                                                            Figure 12: ROC Curve Comparison 
The ROC AUC consistently stays at 99.74% across all thresholds, indicating excellent discriminative 
power. However, the MCC (Matthews Correlation Coefficient) shows a gradual decrease from 91.83% at 
0.5 to 90.76% at 0.7 and 85.50% at 0.9, suggesting a slight reduction in the model's predictive ability as 
the threshold increases. 
▓ MODEL COMPARISON 

Accuracy, Confusion Matrix, AUROC, Precision, Recall and MCC are metrics used to evaluate the 
performance of both models. Both Random Forest and XGBoost models achieve high accuracy, F1 
score, recall, and precision at a threshold of 0.5. However, the performance of the Random Forest model 
drops significantly at higher thresholds (0.7 and 0.9), while XGBoost maintains a more consistent 
performance across all thresholds. This is reflected in the MCC metric, which shows a much sharper 
decline for Random Forest compared to XGBoost. 
Overall, XGBoost appears to be a more robust model, as it is less sensitive to the choice of the threshold 
and delivers consistently good performance across different thresholds. However, if a high true positive 
rate is critical and a higher false positive rate is acceptable, then the Random Forest model might be a 
good choice at a lower threshold. The ROC comparison of the models. 

Table 4: Model Comparison 
Model 

Measure Random Forest XGBoost Random Forest XGBoost Random Forest XGBoost 

Threshold 0.5 0.7 0.9 
Accuracy 98.43 98.5 97.99 98.36 91.74 97.52 
F1 score 98.45 98.51 97.94 98.34 89.01 97.4 

Recall 98.43 98.5 97.99 98.36 91.74 97.52 
Precision 98.49 98.53 97.95 98.34 92.43 97.5 
ROC AUC 99.68 99.74 99.68 99.74 99.68 99.74 

MCC 99.55 91.83 88.46 90.76 39.84 85.5 
5. CONCLUSION 

This study has demonstrated the feasibility and effectiveness of utilizing machine learning algorithms, 
specifically Random Forest and XGBoost, for predicting transformer failures using operational and 
historical data. The analysis revealed the superior performance of XGBoost across all evaluated metrics. 
While both models achieved high accuracy, precision, recall, and F1-score, XGBoost consistently 
outperformed Random Forest, particularly at higher thresholds. The significantly higher MCC value for 
XGBoost reinforces its superior predictive capability. These findings suggest that XGBoost is a more 
robust and reliable model for transformer failure prediction. By effectively leveraging its strengths, 
utilities can significantly enhance grid reliability, optimize maintenance schedules, and reduce 
operational costs associated with unplanned outages. Future research should explore additional 
algorithms and incorporate a broader range of data sources to further enhance predictive model 
robustness and improve electrical grid operations. 
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