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Abstract: This work presents a new approach to the management of singular correlation matrices in the multivariate normal distribution setting. The non–
invertibility of singular correlation matrices makes them difficult to analyze statistically, necessitating the use of specialist methods to accurately evaluate 
multivariate normal probability. With support for arbitrary single correlation matrices, the suggested approach provides a fast and accurate solution for such 
cases. The method provides academics and practitioners dealing with complicated data structures with a flexible tool that takes into consideration. The study 
also expands the use of this technique to the simultaneous creation of confidence intervals. Its applicability for large sample sizes is especially significant, since 
it addresses a major difficulty in statistical inference. This methodology not only improves the validity of probability evaluations when singular correlation 
matrices are present, but it also advances the statistical toolbox that can be used for multivariate normal distribution analysis in practical contexts by 
strengthening the construction of simultaneous confidence intervals 
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1. INTRODUCTION 
Let X1, … , Xm (m ≥  2) be the standardized m –variate normal random variates with a correlation 
matrix �ρjk

{m}�. 
Consider the probability 

Pr ���Xj ≤ bj�; 
m

j=1

�ρjk
{m} = αjk��                                                                     (1) 

where b1, … , bm ϵ ℜ and �ρjk
{m} = αjk� denotes the correlation matrix ρjk

{m} with entry αjk in the jth row 
and k–th column for j ≠ k and entry 1 for j = k, where 1 ≤ j, k ≤ m. The methods for evaluating the 
probability in equation (1) with various non–singular correlation structures have been extensively 
studied by [1–8]. For example, in order to evaluate m–variate normal probability with a non–singular 

negative product structure ��ρjk
{l} = −αjαk�  where 1 < m and ∑

αj
2

1+αj
2 =m

j=1 1�.[4] proved that for any 

2 ≤ i < m   

 Pr �⋂ �Xj ≤ bj�; m
j=1 �ρjk

{m} = αjαk�� = ∫ ∏ �Φ�bj−iαjz
�1+αj

2
��ϕ(z)dz1

j=1
∞
−∞     (2) 

where ϕ is the standard normal density function and extended to complex domain and defined by 

ϕ(x + iy) = ey
x
2 ∫ e−isyϕ(s)dsx

−∞      (3) 
where i2 = −1.  
As l–m has a single correlation structure, [9] demonstrated that the conclusion in equation (2) is 
invalid and developed a novel theory to evaluate one–sided multivariate normal probabilities with 
such unique correlation structure, after changing (2) for 1–m to assess the two–sided probability in 
the form, the result cannot be extended. 

Pr �⋂ �|Xj| ≤ bj�; m
j=1 �ρjk

{m} = −αjαk��                                                        (4) 
where bj > 0 for j = 1, . . . , m.  
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A method for assessing equation (3) for m=3 was developed by [10], with the additional constraint 
that, for m≥4, α1 = α2 = . . . = αm = −1/(m− 1). For each m≥4, [11] offered an alternative method 
to assess the upper and lower limits for (3). 
This work presents an innovative method for assessing (3) with any kind of arbitrary single 
correlation structures. A comparative study between the novel methodology and the current 
method is carried out using numerical and simulation research. The new method is then used, 
provided that the sample size is high enough, to assess the critical values for the simultaneous 
creation of all pairwise confidence intervals and simultaneous confidence intervals for multinomial 
proportions. 
2. SINGULAR MULTIVARIATE NORMAL INTEGRAL EVALUATION 
▓ Negative Product Correlation Structure 

Let X1, … , Xm  be the standardized m–variate normal variates with a singular negative product 

correlation structure,  i. e.  ρjk
{m} = −αjαk with ∑

αj
2

1+αj
2 =m

j=1 1 Denote the events Aj = �Xj: �Xj� ≤ bj� for 

j = 1, . . . , m and Jrm = {(J1, . . . , jr): 1 ≤ j1 < j2 < . . . < jr ≤ m} be a set in on r–dimensional space with 
all the j; ji(1 < i < m) being integers. [11] derived the following inequalities: 

� (−1)r+1 � Pr ���Aji

r

l=1

��Am� − Pr
Jrm−1

m−2

r=1

|Am| ≤ Pr ��Aj

m

j=1

� 

≤ 1 − � (−1)r+1�Pr ��Aji

r

l=1

�
Jrm

m−2

r=1

                                                             (5) 

when m is an odd integer, and  

� (−1)r+1�Pr ��Aji

r

l=1

�
Jrm

m−2

r=1

− 1 ≤ Pr ��Aj

r

j=1

� 

≤ Pr|Am|− � (−1)r+1 � Pr ���Aji

r

l=1

��Am�
Jrm−1

m−2

r=1

                                            (6) 

In the event when m is even. Observe that the multivariate normal probabilities with non–singular 
negative product correlation structures are used to represent the upper and lower bounds for the 
unique multivariate normal probability. Therefore, after extending the solution in equation (2) as 
follows, the boundaries may be numerically evaluated: 

Pr �⋂ Aji
l
j=1 �ρjk

{m} = −αjαk�� = ∫ ∏ �Φ�bj−iαjz
�1+αj

2
� − Φ�−bj−iαjz

�1+αj
2
��ϕ(z)dz1

j=1
∞
−∞                        (7) 

when 2 ≤ l < m and Pr[Am] = 2Φ�bj� − 1 when l = 1. 
Kwong's inequalities can be utilized recursively to express all probabilities in terms of nonsingular 
multivariate normal probabilities, which can then be computed using any available method. This 
allows for the evaluation of both upper and lower bounds for an m–variate normal distribution with 
any arbitrary singular correlation matrix of rank k (k<m). But as m–climbs, the calculation time also 
increases quickly, as does the discrepancy between the precise value and the boundaries. For any 
unique multivariate normal probability, Kwong's inequalities are consequently neither a precise or 
efficient method when m–k>1. In the next part, a novel method is developed. 
▓ General Correlation Structure 

The definition of the multivariate normal distribution, as it is commonly understood, is given when 
the variance–covariance matrix & is positive definite. Described as: 

F(a, b, Σ) = Pr�⋂ �aj ≤ Xj ≤ bj�;  Σm
j=1 � = (2π)−

m
2

�|Σ| ∫ . . .∫ e−
1
2

bm
am

b1
a1

x′Σ−1xdxm . . . dx1                  (8) 
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A key phase in the advancement of the numerical techniques expounded by [7] involved 
transforming to F via x = Cy, whereby C represents the Cholesky factor of Σ(Σ = CCij).  

F(a, b, Σ) = (2π)−
m
2 ∫ e−

1
2

a≤Cy≤b y′ydy                                               (9) 
The findings tends to extend this method to situations in which Σ is positive semi–definite and 
demonstrate that a comparable interpretation of F may be applied in these scenarios as well. Let 
D be a m×m diagonal matrix with nonnegative diagonal elements d1, d2, . . . , dm.  and let Σ =UDU' be 
a singular value decomposition for Σ,  In the event where k is the rank of Σ and k < m, then dk+1 =
dk+2 = . . .  = dm = 0. 
Now define Σ(ϵ) = Σ + ϵl  for ϵ > 0 Then 

Σ(ϵ) = UDU′ + ϵl = U(D + ϵl)U′ = UD(ϵ)U′, 
where D(ϵ) = D + ϵl, so Σ(ϵ) is positive definite, and F(a, b, Σ) is properly defined and let V(ϵ) =

UD(ϵ)
1
2, so Σ(ϵ) = V(ϵ)V′(ϵ) , and let x = V(ϵ)v.  

Then, 

F(a, b, Σ) = (2π)−
m
2 ∫ e−

1
2v

′vdv.
a≤V(ϵ)v≤b                                              (10) 

Taking the limit as « approaches zero, we have 

F(a, b, Σ) = (2π)−
m
2 ∫ e−

1
2v

′vdv.
a≤Vv≤b                                               (11) 

where V = V(0). V can be written as V = U�D
1
2, where U is an m × m matrix with its first k columns as 

the first k columns of U and remaining m − k columns as columns of zeros, because dk+1 = dk+2 =
 . . .  = dm = 0. For a final step, we determine an m × m orthogonal matrix Q so that C = VQ′ is lower 
triangular. The Q required for this step is an m × m identity matrix except for its principal k × k 
submatrix which is the k × k orthogonal matrix required to make the principal k × k sub matrix of 
V lower triangular (see Golub and Van Loan, 1996, for a description of how such a O can be 

determined). Then, if v = Q′y, F(a, b, Σ) = (2π)−
m
2 ∫ e−

1
2y

′ydy
a≤Cy≤b ,  where C is lower triangular and 

cij = 0 if j > k. The integration region defined by a ≤ Cy ≤ b places no constraint on the variables 
yk+1, yk+2, . . .  ym , and all possible values between  −∞ and so for these variables are consistent 
with the definition of the integration region, so the innermost m– k integrals are all equal to one. 
Therefore 

F(a, b, Σ) = (2π)−
k
2 ∫ e−

1
2y

′ydy
a≤Cy≤b                                                (12) 

where C is now the m × k matrix obtained by removing the original m– k zero columns from the 
original C and y = (y1, y2, . . .  yk)′. This matrix C can be computed directly using the generalized 
Cholesky decomposition algorithm described by [12]. 
Next, in accordance with [7] methodology, rewrite each of the inequalities a ≤ Cy ≤ b using the 
lower triangular structure of C, and explicitly state the integration limits for F to yield F in the 
following form: 

F(a, b, Σ) = (2π)−
k
2 ∫ e−

y1
2

2
b1′

a1′
∫ e−

y2
2

2   b2′ (y1)
a2′ (y1) . . .∫ e−

yk
2

2   bk
′ (y1,..yk−1)

ak
′ (y1,..yk−1) dy                          (13) 

where ak′ (y1, . . yk−1) =
ai−∑ ci,jyji=1

j=1

ci,i
 and bk′ (y1, . . yk−1) =

bi−∑ ci,jyji=1
j=1

ci,i
, for i = 1, 2, . . . , k. But this definition 

of F is not complete if k < m, because we must take into account the m– k additional constraints 
ai ≤ ∑ ci,jyj ≤ bii

j=   for  i = k + 1, k + 2, . . . m, that the k integration variables must satisfy. There are 
various cases to consider. In order to introduce the general cases, the findings consider the case 
where cik ≠ 0  for all  i > k. In this case we only need to place additional constraints on yk and 
modify the definitions of ak′   and bk′ . We first rewrite the last m − k + 1 constraint in the form ai −
∑ ci,jyjk−1
j=1 ≤ ci,kyk ≤ bi − ∑ ci,jyjk−1

j=1 , for i = k, k + 1, . . . m.  
Then we divide these constraints into two groups, the first group consisting of the constraints 
where ci,k > 0 and the second group consisting of the constraints where ci,k < 0. For both groups, 
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we divide by ci,k. to produce explicit constraints on yk, but for the second group we must change 
the order of the inequalities. The revised limits for yk can now be written as 

a�′k(y1, . . .  yk−1) = max �
max

ci,k > 0 �
ai−∑ ci,jyjk−1

j=1

ci,k
� ,

max
ci,k > 0 �

bi−∑ ci,jyjk−1
j=1

ci,k
��                     (14) 

b�′k(y1, . . .  yk−1) 

= max �a�′k(y1, . . .  yk−1), min�
min

ci,k > 0�
bi − ∑ ci,jyjk−1

j=1

ci,k
� ,

min
ci,k > 0�

ai − ∑ ci,jyjk−1
j=1

ci,k
��� 

In the cases where ci,k = 0 for some i′s, with i > k, the associated constraints for these i′s do not 
affect yk, so the constraints for some of other variables need to be adjusted. For these general 
cases, we first reorder all of the constraints into groups of sizes l1, l2, . . . , lk, with l1 + l2+. . . +lk = m, 
so that if we denote the reordered constraints by a ≤ C�y ≤ b� then the first l1 rows of C have the 
form (∗, 0, . . . ,0), the next l2 rows of c have the form (? ,∗, 0, . . . ,0), and so on with the last lk rows of 
C in the form (? , . . . , ? ,∗), where * denotes a nonzero and ? denotes zero or nonzero. Then, for each 
i, i = 1, . . . , k  the set of li constraints are rewritten and merged to produce a single constraint on y; 
using the procedure that we described for yk. When this process is complete, the integral for F  can 
be written as 

F(a, b, Σ) = (2π)−
k
2 ∫ e−

y1
2

2
b�1′

a�1′
∫ e−

y2
2

2   b�2′ (y1)
a�2′ (y1) . . .∫ e−

yk
2

2   b�k
′ (y1,..yk−1)

a�k
′ (y1,..yk−1) dy                          (15) 

In order to put F into a form that is easy to use with standard numerical integration methods, two 
more transformations are required. First, let yi = Φ−1(zi), for i = 1, 2, . . . k so that ϕ(yi)dyi = dzi. 
Then 

F(a, b, Σ) = (2π)−
k
2 � �

c2(z1)

d2(z1)

c1

d1
. . .� dz

ck(z1,..zk−1)

dk(z,..zk−1)
 

with 
di(z1, . . zi−1) = Φ�(ai′(Φ−1(zi), . . . ,Φ−1(zi−1))), 

and 
ci(z1, . . zi−1) = Φ�(bi′(Φ�−1(zi), . . . ,Φ�−1(zi−1))), 

Finally, let zi = di + (ei − di)ui, for i = 1, . . . , k, so dzi = (ei − di)dui. Then 

F(a, b, Σ) = (e1 − d1)� (e2(u1)− d2(u1))
1

0
. . .� (ek(u1, . . . , uk−1) − dk(u1, . . . , uk−1))

1

0
� du
1

0
 

The innermost integral is one, so the numerical problem involves the estimation of a (k − 1) 
dimensional integral. 
3. NUMERICAL AND SIMULATION STUDIES 
Assume that Zj for j = 1, . . . , m are independently and normally distributed with mean 0 and 
variance �1 + aj2�. Let Z� = ∑ Zjαj2/(1 + αj2)m

j=1 . [9] showed that the standardized multivariate normal 
random variables with singular correlation structure given in equation (3) can be generated by the 
transformation Xj = aj(Zj − Z� for  j = 1 , . . . , m, where ∑ αj2/(1 + αj2)m

j=1 = 1. Therefore, for any given 
bj and aj for j = 1, . . . , m, we generate all the Zj and transform each of them to Xj based on equation 
(4). Then, we observe whether absolute value of each Xj is less than its corresponding bj for j =
1, . . . , m, respectively.  
The process is repeated N times, and the nominal probabilities from the simulation and a standard 
error are calculated. Those simulated probabilities are compared with two bounds obtained 
numerically according to Section 2.1, and with the numerical evaluation of the F integrals described 
in Section 2.2. Randomized lattice rules were used for the numerical integration of F, and the 
absolute accuracy requested was 0.001 [13]. For this method, the amount of work required was 
measured as the number N of integrand values (values) required to estimate F with error less than 
0.001. The error estimates used for the randomized lattice rules were three times the standard 
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errors for these randomized rules. In order to compare these values with values from the 
simulation method, we used the same for the simulation method, and report an error estimate for 
the simulation that is three times the standard error for the simulation method.  
It is obvious that the differences among the two bounds are negligible in all the considered cases. 
However, the computational time of evaluating the bounds increases rapidly as m increases. It is 
impractical to compute the bounds for m > 12. The computational time of new approach described 
in Section 2.2 also increases with m, but the estimate values of all the cases considered in this study 
were obtained in a short period of computational time. The error estimates for the simulation 
method, using the same number of function values, were in all cases significantly larger than the 
error estimates for the new method. The new method can also be applied to the multivariate 
normal distributions with any arbitrary singular correlation structures. Therefore, we conclude that 
the proposed approach provides an efficient and accurate way to estimate the Fintegrals with any 
singular correlation matrices. 

Table 1:  Bounds and Estimated Values for MVN Probabilities 
bj′s   f Values f Values 

 Upper Lower Simulated F Estimate 
αj2/(1 + αj2)′s Bound Bound Error Est. Error Est. 

(2.3, 2.2, 2.1, 2.0)   4224 4224 
 .887369 .887310 .888968 .887541 

(.2, .1, .4, .3)   .014504 .000374 
(.5, 2.4, 1.0, 2.0, 1.6)   496 496 

 .232658 .232373 .286290 .232567 
(.1, .2, .2, .2, .3)   .060951 .000642 

(2.2, 2.4, 2.5, 2.0, 2.1)   6992 6992 
 .880775 .880773 .879720 878440 

(.3, .1, .05, .5, .05)   .011671 .000682 
(2.4, .5, 1.2, .4, 1.9, 2.0)   496 496 

 .089252 .089103 .066532 .089192 
(.1, .1, .2, .2, .2, .2)   .033603 .000479 

(1.6, 1.7, 1.8, 1.4, 2.1, 2.5,   6692 6692 
1.6) .554366 .554366 .560212 .554429 

(.1, .1, .2, .2, .2, .1, .1)   .017809 .000979 
(2.0, 2.1, 1.9, 1.8, 2.0, 2.1,   6692 6692 

2.2, 2.3) .714231 .714231 698227 .713891 
(.1, .1, .1, .1, .15, .05,   .016470 .000985 

.2, 2)     
(.4, 2.2, 2.5, 3.1, .9, 1.8,   496 496 

.8, 2.3, 2.9) .102861 .102861 .098790 .102832 
(.01, .02, .07, .1, .15, .05,   .040234 .000269 

.3, .2, .1)     
(2.8, 2.9, 2.8, 2.7, 2.4, 3.3,   1248 1248 

3.4, 2.5, 2.6, 2.7) .935023 .935023 .927885 .934968 
(.1, .05, .05, .04, .06, .1,   .021976 .000658 

.15, .15, .1, .2)     
(3.0, 2.8, 2.4, 2.5, 1.9, 2.2,   6992 6992 
2.1, 2.0, 2.4, 2.5, .9, 1.8) .475903 .475903 .496281 .475583 
(.02, .08, .04, .06, .1, .1,   .017939 .000827 

.16, .14, .15, .1, .05)     
(2.5, 2.7, 3.4, .9, 2.4, 1.7,   496 496 
1.8, 2.3, 2.4, 2.6, .9, .8) .185877 .185877 .181452 .185936 

(.01, .03, .06, .05, .05, .1,   .051966 .000689 
.15, .05, .1, .14, .16, .1)     

 

4. CONCLUSION 
Investigating the use of singular correlation matrices in the context of the multivariate normal 
distribution has shown an innovative method to handling the complexities involved in singular 
correlation matrices. This work is important because it advances statistical methods, especially in 
situations when singularity presents difficulties for traditional approaches. 
A critical gap in statistical modeling is filled by the suggested method, as variable dependencies 
frequently result in singular correlation matrices. Historically, multivariate studies have faced 
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difficulties with singular matrices due to their non–invertibility. By utilizing singular correlation 
matrices to their full potential rather than viewing them as obstacles, the approach offers a more 
holistic viewpoint. 
The effective use of the proposed method in the context of calculating simultaneous pairwise 
confidence intervals for multinomial proportions is one noteworthy application. This application 
becomes more significant with suitably large sample sizes. In these types of situations, singularities 
frequently impede the traditional techniques for calculating confidence intervals, producing 
undefinable or erroneous outcomes. The method, on the other hand, shows persistence in 
overcoming these difficulties, opening the door for more solid and trustworthy statistical 
conclusions. 
The methodology's effectiveness is especially noticeable when multinomial percentage estimate is 
involved, as category dependencies can make standard studies more difficult. By using a novel 
method, the results not only get over the drawbacks of singular correlation matrices but also 
improve the accuracy of confidence interval estimations all at once and comprehensively. 
With the growing complexity of real–world datasets in statistical studies, the suggested technique 
offers a useful resource for both practitioners and scholars. Its flexibility and efficiency when dealing 
with singular correlation matrices present a viable path for improving statistical modeling methods 
and enhancing the precision of conclusions in the areas of multinomial proportion estimation and 
multivariate normal distribution. 
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